Particle trapping and acceleration in turbulent post-flare coronal loops

被引:1
作者
Bacchini, Fabio [1 ,2 ]
Ruan, Wenzhi [1 ]
Keppens, Rony [1 ]
机构
[1] Katholieke Univ Leuven, Ctr Math Plasma Astrophys, Dept Math, Celestijnenlaan 200B, B-3001 Leuven, Belgium
[2] Royal Belgian Inst Space Aeron, Solar Terr Ctr Excellence, Ringlaan 3, B-1180 Uccle, Belgium
基金
比利时弗兰德研究基金会; 欧洲研究理事会;
关键词
acceleration of particles; turbulence; Sun: corona; Sun: flares; Sun:; X-rays; gamma-rays; X-RAY-EMISSION; ELECTRON ACCELERATION; MAGNETIC RECONNECTION; CHARGED-PARTICLE; SOLAR-FLARES; CASCADING RECONNECTION; GLOBAL ENERGETICS; SIMULATION; TRANSPORT; TOP;
D O I
10.1093/mnras/stae723
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present a study of energetic-electron trapping and acceleration in the Kelvin-Helmholtz-induced magnetohydrodynamic (MHD) turbulence of post-flare loops in the solar corona. Using the particle-tracing capabilities of MPI-AMRVAC 3.0, we evolve ensembles of test electrons (i.e. without feedback to the underlying MHD) inside the turbulent looptop, using the guiding-centre approximation. With the MHD looptop model of Ruan et al., we investigate the relation between turbulence and particle trapping inside the looptop structure, showing that better-developed turbulent cascades result in more efficient trapping primarily due to mirror effects. We then quantify the electron acceleration in the time-evolving MHD turbulence, and find that ideal-MHD processes inside the looptop can produce non-thermal particle spectra from an initial Maxwellian distribution. Electrons in this turbulence are preferentially accelerated by mirror effects in the direction perpendicular to the local magnetic field while remaining confined within small regions of space between magnetic islands. Assuming dominance of Bremsstrahlung radiation mechanisms, we employ the resulting information from accelerated electrons (combined with the MHD background) to construct HXR spectra of the post-flare loop that include non-thermal-particle contributions. Our results pave the way to constructing more realistic simulations of radiative coronal structure for comparison with current and future observations.
引用
收藏
页码:2399 / 2412
页数:14
相关论文
共 61 条
[1]   A UNIFIED COMPUTATIONAL MODEL FOR SOLAR AND STELLAR FLARES [J].
Allred, Joel C. ;
Kowalski, Adam F. ;
Carlsson, Mats .
ASTROPHYSICAL JOURNAL, 2015, 809 (01)
[2]   GLOBAL ENERGETICS OF SOLAR FLARES. III. NONTHERMAL ENERGIES [J].
Aschwanden, Markus J. ;
Holman, Gordon ;
O'Flannagain, Aidan ;
Caspi, Amir ;
McTiernan, James M. ;
Kontar, Eduard P. .
ASTROPHYSICAL JOURNAL, 2016, 832 (01)
[3]   A Coupled Guiding Center-Boris Particle Pusher for Magnetized Plasmas in Compact-object Magnetospheres [J].
Bacchini, Fabio ;
Ripperda, Bart ;
Philippov, Alexander A. ;
Parfrey, Kyle .
ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2020, 251 (01)
[4]   Relations between concurrent hard X-ray sources in solar flares [J].
Battaglia, M. ;
Benz, A. O. .
ASTRONOMY & ASTROPHYSICS, 2006, 456 (02) :751-760
[5]   KINETIC MODELING OF PARTICLE ACCELERATION IN A SOLAR NULL-POINT RECONNECTION REGION [J].
Baumann, G. ;
Haugbolle, T. ;
Nordlund, A. .
ASTROPHYSICAL JOURNAL, 2013, 771 (02)
[6]   Flare Observations [J].
Benz, Arnold O. .
LIVING REVIEWS IN SOLAR PHYSICS, 2016, 14
[7]  
Cargill P., 1996, EOSTR, V77, P353, DOI [10.1029/96EO00242, DOI 10.1029/96EO00242]
[8]   Measurement of magnetic field and relativistic electrons along a solar flare current sheet [J].
Chen, Bin ;
Shen, Chengcai ;
Gary, Dale E. ;
Reeves, Katharine K. ;
Fleishman, Gregory D. ;
Yu, Sijie ;
Guo, Fan ;
Krucker, Sam ;
Lin, Jun ;
Nita, Gelu M. ;
Kong, Xiangliang .
NATURE ASTRONOMY, 2020, 4 (12) :1140-1147
[9]   Thermodynamics of supra-arcade downflows in solar flares [J].
Chen, Xin ;
Liu, Rui ;
Deng, Na ;
Wang, Haimin .
ASTRONOMY & ASTROPHYSICS, 2017, 606
[10]   The Interplay of Magnetically Dominated Turbulence and Magnetic Reconnection in Producing Nonthermal Particles [J].
Comisso, Luca ;
Sironi, Lorenzo .
ASTROPHYSICAL JOURNAL, 2019, 886 (02)