Automatic segmentation and classification of frontal sinuses for sex determination from CBCT scans using a two-stage anatomy-guided attention network

被引:4
作者
da Silva, Renan Lucio Berbel [1 ]
Yang, Su [2 ]
Kim, Dael [3 ]
Kim, Jun Ho [1 ]
Lim, Sang-Heon [3 ]
Han, Jiyong [3 ]
Kim, Jun-Min [4 ]
Kim, Jo-Eun [5 ,6 ]
Huh, Kyung-Hoe [5 ,6 ]
Lee, Sam-Sun [5 ,6 ]
Heo, Min-Suk [5 ,6 ]
Yi, Won-Jin [2 ,5 ,6 ]
机构
[1] Univ Sao Paulo, Sch Dent, Dept Stomatol, Discipline Oral Radiol, Sao Paulo, SP, Brazil
[2] Seoul Natl Univ, Grad Sch Convergence Sci & Technol, Dept Appl Bioengn, Seoul 08826, South Korea
[3] Seoul Natl Univ, Grad Sch, Interdisciplinary Program Bioengn, Seoul 08826, South Korea
[4] Hansung Univ, Dept Elect & Informat Engn, Seoul 02876, South Korea
[5] Seoul Natl Univ, Sch Dent, Dept Oral & Maxillofacial Radiol, Seoul 03080, South Korea
[6] Seoul Natl Univ, Sch Dent, Dent Res Inst, Seoul 03080, South Korea
基金
新加坡国家研究基金会;
关键词
Deep learning; Sex determination; Frontal sinus; CBCT; Anatomy-guided attention; CT IMAGES; IDENTIFICATION;
D O I
10.1038/s41598-024-62211-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Sex determination is essential for identifying unidentified individuals, particularly in forensic contexts. Traditional methods for sex determination involve manual measurements of skeletal features on CBCT scans. However, these manual measurements are labor-intensive, time-consuming, and error-prone. The purpose of this study was to automatically and accurately determine sex on a CBCT scan using a two-stage anatomy-guided attention network (SDetNet). SDetNet consisted of a 2D frontal sinus segmentation network (FSNet) and a 3D anatomy-guided attention network (SDNet). FSNet segmented frontal sinus regions in the CBCT images and extracted regions of interest (ROIs) near them. Then, the ROIs were fed into SDNet to predict sex accurately. To improve sex determination performance, we proposed multi-channel inputs (MSIs) and an anatomy-guided attention module (AGAM), which encouraged SDetNet to learn differences in the anatomical context of the frontal sinus between males and females. SDetNet showed superior sex determination performance in the area under the receiver operating characteristic curve, accuracy, Brier score, and specificity compared with the other 3D CNNs. Moreover, the results of ablation studies showed a notable improvement in sex determination with the embedding of both MSI and AGAM. Consequently, SDetNet demonstrated automatic and accurate sex determination by learning the anatomical context information of the frontal sinus on CBCT scans.
引用
收藏
页数:14
相关论文
共 37 条
[1]   A New Performance Evaluation Metric for Classifiers: Polygon Area Metric [J].
Aydemir, Onder .
JOURNAL OF CLASSIFICATION, 2021, 38 (01) :16-26
[2]   The Accuracy of Sex Identification Using CBCT Morphometric Measurements of the Mandible, with Different Machine-Learning Algorithms-A Retrospective Study [J].
Baban, Mohammed Taha Ahmed ;
Mohammad, Dena Nadhim .
DIAGNOSTICS, 2023, 13 (14)
[3]   Artificial intelligence for sex determination of skeletal remains: Application of a deep learning artificial neural network to human skulls [J].
Bewes, James ;
Low, Andrew ;
Morphett, Antony ;
Pate, F. Donald ;
Henneberg, Maciej .
JOURNAL OF FORENSIC AND LEGAL MEDICINE, 2019, 62 :40-43
[4]   Frontal Sinus Accuracy in Identification as Measured by False Positives in Kin Groups [J].
Cameriere, Roberto ;
Ferrante, Luigi ;
Molleson, Theya ;
Brown, Barry .
JOURNAL OF FORENSIC SCIENCES, 2008, 53 (06) :1280-1282
[5]  
Capitaneanu C, 2017, J Forensic Odontostomatol, V35, P1
[6]   The Frontal Sinus Cavity Exhibits Sexual Dimorphism in 3D Cone-beam CT Images and can be Used for Sex Determination [J].
Choi, Isabela G. G. ;
Duailibi-Neto, Eduardo F. ;
Beaini, Thiago L. ;
da Silva, Renan L. B. ;
Chilvarquer, Israel .
JOURNAL OF FORENSIC SCIENCES, 2018, 63 (03) :692-698
[7]   Frontal sinuses as tools for human identification: a systematic review of imaging methods [J].
Dietrichkeit Pereira, Julia Gabriela ;
Sa Santos, Juliane Bustamante ;
de Sousa, Silmara Pereira ;
Franco, Ademir ;
Alves Silva, Ricardo Henrique .
DENTOMAXILLOFACIAL RADIOLOGY, 2021, 50 (05)
[8]   Convolutional Neural Network Performance for Sella Turcica Segmentation and Classification Using CBCT Images [J].
Duman, Suayip Burak ;
Syed, Ali Z. ;
Ozen, Duygu Celik ;
Bayrakdar, Ibrahim Sevki ;
Salehi, Hassan S. ;
Abdelkarim, Ahmed ;
Celik, Ozer ;
Eser, Gozde ;
Altun, Oguzhan ;
Orhan, Kaan .
DIAGNOSTICS, 2022, 12 (09)
[9]  
Elharrouss O, 2022, Arxiv, DOI [arXiv:2206.08016, 10.48550/arXiv.2206.08016]
[10]  
Eliades A., 2016, Oral Surg, V9, P85, DOI [10.1111/ors.12168, DOI 10.1111/ORS.12168]