The art of modeling gene regulatory circuits

被引:2
作者
Gomez-Schiavon, Mariana [1 ,2 ]
Montejano-Montelongo, Isabel [1 ,2 ]
Orozco-Ruiz, F. Sophia [1 ,2 ]
Sotomayor-Vivas, Cristina [1 ,2 ]
机构
[1] Univ Nacl Autonoma Mexico, Int Lab Human Genome Res, Queretaro 76230, Mexico
[2] Millennium Inst Integrat Biol iBio, ANID Millennium Sci Initiat Program, Santiago 8331150, Chile
关键词
NETWORKS; MOTIFS; FORMS;
D O I
10.1038/s41540-024-00380-2
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The amazing complexity of gene regulatory circuits, and biological systems in general, makes mathematical modeling an essential tool to frame and develop our understanding of their properties. Here, we present some fundamental considerations to develop and analyze a model of a gene regulatory circuit of interest, either representing a natural, synthetic, or theoretical system. A mathematical model allows us to effectively evaluate the logical implications of our hypotheses. Using our models to systematically perform in silico experiments, we can then propose specific follow-up assessments of the biological system as well as to reformulate the original assumptions, enriching both our knowledge and our understanding of the system. We want to invite the community working on different aspects of gene regulatory circuits to explore the power and benefits of mathematical modeling in their system.
引用
收藏
页数:6
相关论文
共 46 条
[1]   Bivalent chromatin as a therapeutic target in cancer: An in silico predictive approach for combining epigenetic drugs [J].
Alarcon, Tomas ;
Sardanyes, Josep ;
Guillamon, Antoni ;
Menendez, Javier A. .
PLOS COMPUTATIONAL BIOLOGY, 2021, 17 (06)
[2]   Network motifs: theory and experimental approaches [J].
Alon, Uri .
NATURE REVIEWS GENETICS, 2007, 8 (06) :450-461
[3]   A survey of gene regulatory networks modelling methods: from differential equations, to Boolean and qualitative bioinspired models [J].
Barbuti, Roberto ;
Gori, Roberta ;
Milazzo, Paolo ;
Nasti, Lucia .
JOURNAL OF MEMBRANE COMPUTING, 2020, 2 (03) :207-226
[4]   Ecological feedback in quorum-sensing microbial populations can induce heterogeneous production of autoinducers [J].
Bauer, Matthias ;
Knebel, Johannes ;
Lechner, Matthias ;
Pickl, Peter ;
Frey, Erwin .
ELIFE, 2017, 6
[5]   Programmable assembly of pressure sensors using pattern-forming bacteria [J].
Cao, Yangxiaolu ;
Feng, Yaying ;
Ryser, Marc D. ;
Zhu, Kui ;
Herschlag, Gregory ;
Cao, Changyong ;
Marusak, Katherine ;
Zauscher, Stefan ;
You, Lingchong .
NATURE BIOTECHNOLOGY, 2017, 35 (11) :1087-+
[6]   The cotton MYB108 forms a positive feedback regulation loop with CML11 and participates in the defense response against Verticillium dahliae infection [J].
Cheng, Huan-Qing ;
Han, Li-Bo ;
Yang, Chun-Lin ;
Wu, Xiao-Min ;
Zhong, Nai-Qin ;
Wu, Jia-He ;
Wang, Fu-Xin ;
Wang, Hai-Yun ;
Xia, Gui-Xian .
JOURNAL OF EXPERIMENTAL BOTANY, 2016, 67 (06) :1935-1950
[7]   The role of modelling in identifying drug targets for diseases of the cell cycle [J].
Clyde, Robert G. ;
Bown, James L. ;
Hupp, Ted R. ;
Zhelev, Nikolai ;
Crawford, John W. .
JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2006, 3 (10) :617-627
[8]   A meeting with Enrico Fermi - How one intuitive physicist rescued a team from fruitless research. [J].
Dyson, F .
NATURE, 2004, 427 (6972) :297-297
[9]   Functional roles for noise in genetic circuits [J].
Eldar, Avigdor ;
Elowitz, Michael B. .
NATURE, 2010, 467 (7312) :167-173
[10]   Challenges in measuring and understanding biological noise [J].
Eling, Nils ;
Morgan, Michael D. ;
Marioni, John C. .
NATURE REVIEWS GENETICS, 2019, 20 (09) :536-548