On the Pohozaev identity for the fractional p-Laplacian operator in RN

被引:3
作者
Ambrosio, Vincenzo [1 ,2 ]
机构
[1] Univ Politecn Marche, Dipartimento Ingn Ind & Sci Matemat, Ancona, Italy
[2] Univ Politecn Marche, Dipartimento Ingn Ind & Sci Matemat, Via Brecce Bianche 12, I-60131 Ancona, Italy
关键词
SCALAR FIELD-EQUATIONS; ELLIPTIC-EQUATIONS; HOLDER REGULARITY; EXTENSION; SYMMETRY;
D O I
10.1112/blms.13039
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we show the existence of a nontrivial weak solution for a nonlinear problem involving the fractional p-Laplacian operator and a Berestycki-Lions type nonlinearity. This solution satisfies a Pohozaev identity. Moreover, we prove that any sufficiently smooth solution fulfills the Pohozaev identity.
引用
收藏
页码:1999 / 2013
页数:15
相关论文
共 25 条
[11]   Ground state of scalar field equations involving a fractional Laplacian with general nonlinearity [J].
Chang, X. ;
Wang, Z-Q .
NONLINEARITY, 2013, 26 (02) :479-494
[12]   Maximum principles for the fractional p-Laplacian and symmetry of solutions [J].
Chen, Wenxiong ;
Li, Congming .
ADVANCES IN MATHEMATICS, 2018, 335 :735-758
[13]   Gradient regularity in mixed local and nonlocal problems [J].
De Filippis, Cristiana ;
Mingione, Giuseppe .
MATHEMATISCHE ANNALEN, 2024, 388 (01) :261-328
[14]   On the regularity of solutions in the Pucci-Serrin identity [J].
Degiovanni, M ;
Musesti, A ;
Squassina, M .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2003, 18 (03) :317-334
[15]   A Hopf's lemma and a strong minimum principle for the fractional p-Laplacian [J].
Del Pezzo, Leandro M. ;
Quaas, Alexander .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 263 (01) :765-778
[16]   THREE REPRESENTATIONS OF THE FRACTIONAL p-LAPLACIAN: SEMIGROUP, EXTENSION AND BALAKRISHNAN FORMULAS [J].
del Teso, Felix ;
Gomez-Castro, David ;
Vazquez, Juan Luis .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2021, 24 (04) :966-1002
[17]   Hitchhiker's guide to the fractional Sobolev spaces [J].
Di Nezza, Eleonora ;
Palatucci, Giampiero ;
Valdinoci, Enrico .
BULLETIN DES SCIENCES MATHEMATIQUES, 2012, 136 (05) :521-573
[18]   A fractional Hadamard formula and applications [J].
Djitte, Sidy Moctar ;
Fall, Mouhamed Moustapha ;
Weth, Tobias .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2021, 60 (06)
[19]   QUASILINEAR ELLIPTIC-EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENTS [J].
GUEDDA, M ;
VERON, L .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1989, 13 (08) :879-902
[20]   Global Holder regularity for the fractional p-Laplacian [J].
Iannizzotto, Antonio ;
Mosconi, Sunra ;
Squassina, Marco .
REVISTA MATEMATICA IBEROAMERICANA, 2016, 32 (04) :1353-1392