Non-local relativistic δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta $$\end{document}-shell interactions

被引:0
作者
Lukáš Heriban [1 ]
Matěj Tušek [1 ]
机构
[1] Czech Technical University in Prague,Department of Mathematics Faculty of Nuclear Sciences and Physical Engineering
关键词
Dirac operator; Shell interaction; Non-local potentials; Regular approximations; 81Q10; 81Q80;
D O I
10.1007/s11005-024-01828-6
中图分类号
学科分类号
摘要
In this paper, new self-adjoint realizations of the Dirac operator in dimension two and three are introduced. It is shown that they may be associated with the formal expression D0+|FδΣ⟩⟨GδΣ|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {D}_0+|F\delta _\Sigma \rangle \langle G\delta _\Sigma |$$\end{document}, where D0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {D}_0$$\end{document} is the free Dirac operator, F and G are matrix valued coefficients, and δΣ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta _\Sigma $$\end{document} stands for the single layer distribution supported on a hypersurface Σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Sigma $$\end{document}, and that they can be understood as limits of the Dirac operators with scaled non-local potentials. Furthermore, their spectral properties are analysed.
引用
收藏
相关论文
共 58 条
  • [1] Antoine JP(1987)Exactly solvable models of sphere interactions in quantum mechanics J. Phys. A: Math. Gen. 20 3687-639
  • [2] Gesztesy F(2014)Shell interactions for Dirac operators J. de Mathématiques Pures et Appliquées 102 617-314
  • [3] Shabani J(2019)On Dirac operators in Quantum Stud. 6 295-184
  • [4] Arrizabalaga N(2020) with electrostatic and Lorentz scalar J. Spectral Theory 10 147-565
  • [5] Mas A(2020)-shell interactions J. Funct. Anal. 279 2350036-1524
  • [6] Vega L(2024)On Dirac operators with electrostatic Rev. Math. Phys. 36 536-1492
  • [7] Behrndt J(2023)-shell interactions of critical strength J. Phys. A: Math. Theor. 56 52-410
  • [8] Exner P(2007)Two-dimensional Dirac operators with singular interactions supported on closed curves J. Funct. Anal. 243 1510-95
  • [9] Holzmann M(2022)Boundary triples and Weyl functions for Dirac operators with singular interaction Lett. Math. Phys. 112 1443-242
  • [10] Lotoreichik V(1978)Two-dimensional Dirac operator with general Phys. Rev. C 18 397-2882