Integration of the Modified Korteweg-de Vries Equation with Time-Dependent Coefficients and a Self-Consistent Source

被引:0
作者
Sobirov, Sh. K. [1 ]
Hoitmetov, U. A. [1 ]
机构
[1] Urgench State Univ, Urgench, Uzbekistan
关键词
loaded modified Korteweg-de Vries equation; Jost solution; scattering data; Gelfand-Levitan-Marchenko integral equation; 517.957; MKDV EQUATION; SOLITONS;
D O I
10.1134/S0037446624040220
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the Cauchy problem for the modified Korteweg-de Vries equation with time-dependent coefficients and a self-consistent source in the class of rapidly decreasing functions. To solve the problem, we find Lax pairs and employ the inverse scattering method. Note that in the case under study the Dirac operator is not selfadjoint, and so the eigenvalues can be multiples. We find the equations describing the dynamics in time of the scattering data of a nonselfadjoint Dirac operator whose potential is a solution to the modified Korteweg-de Vries equation with time-dependent coefficients and a self-consistent source in the class of rapidly decreasing functions. As a special case, we examine a loaded modified Korteweg-de Vries equation with a self-consistent source. The equations describe the dynamics in time of the scattering data of a nonselfadjoint Dirac operator whose potential is a solution to the loaded modified Korteweg-de Vries equation with variable coefficients in the class of rapidly decreasing functions. We provide some examples that illustrate applications of the results.
引用
收藏
页码:971 / 986
页数:16
相关论文
共 31 条
[1]  
Ablowitz M. J., 1987, SOLITONS INVERSE SCA
[2]   The Application of the Functional Variable Method for Solving the Loaded Non-linear Evaluation Equations [J].
Babajanov, Bazar ;
Abdikarimov, Fakhriddin .
FRONTIERS IN APPLIED MATHEMATICS AND STATISTICS, 2022, 8
[3]  
Das S., 2016, Intern. J. Adv. Res. Math, V6, P32, DOI [10.18052/www.scipress.com/IJARM.6.32, DOI 10.18052/WWW.SCIPRESS.COM/IJARM.6.32]
[5]  
Dodd R. K, 1982, Solitons and Nonlinear Wave Equations, DOI DOI 10.1002/ZAMM.19850650811
[6]   METHOD FOR SOLVING KORTEWEG-DEVRIES EQUATION [J].
GARDNER, CS ;
GREENE, JM ;
KRUSKAL, MD ;
MIURA, RM .
PHYSICAL REVIEW LETTERS, 1967, 19 (19) :1095-&
[7]   COMMUTATION METHODS APPLIED TO THE MKDV-EQUATION [J].
GESZTESY, F ;
SCHWEIGER, W ;
SIMON, B .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 324 (02) :465-525
[8]  
Hasanov AB, 2021, PROC INST MATH MECH, V47, P250
[9]   EXACT SOLUTION OF MODIFIED KORTEWEG-DE VRIES EQUATION FOR MULTIPLE COLLISIONS OF SOLITONS [J].
HIROTA, R .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1972, 33 (05) :1456-1458
[10]  
Hoitmetov U. A., 2021, SIB ADV MATH, V32, P102, DOI [10.1134/S1055134422020043, DOI 10.1134/S1055134422020043]