DACNN-aided nonlinear equalizer for a probabilistic shaping coherent optical communication system

被引:0
作者
Li, Yuzhe [1 ,2 ,3 ]
Chang, Huan [4 ,5 ]
Zhang, Qi [1 ,2 ,3 ]
Gao, Ran [4 ,5 ]
Tian, Feng [1 ,2 ,3 ]
Tian, Qinghua [1 ,2 ,3 ]
Wang, Yongjun [1 ,2 ,3 ]
Rao, Lan [1 ,2 ,3 ]
Guo, Dong [4 ,5 ]
Wang, Fu [1 ,2 ,3 ]
Zhou, Sitong [4 ,5 ]
Xin, Xiangjun [4 ,5 ]
机构
[1] Beijing Univ Posts & Telecommun, Sch Elect Engn, Beijing 100876, Peoples R China
[2] Beijing Univ Posts & Telecommun, Beijing Key Lab Space Ground Interconnect & Conver, Beijing 100876, Peoples R China
[3] Beijing Univ Posts & Telecommun, State Key Lab Informat Photon & Opt Commun, Beijing 100876, Peoples R China
[4] Beijing Inst Technol, Sch Informat & Elect, Beijing 100081, Peoples R China
[5] Beijing Inst Technol, Key Lab Photon Informat Technol, Minist Ind & Informat Technol, Beijing 100081, Peoples R China
关键词
TRANSMISSION;
D O I
10.1364/AO.517521
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The probabilistic shaping (PS) technique is a key technology for fiber optic communication systems to further approach the Shannon limit. To solve the problem that nonlinear equalizers are ineffective for probabilistic shaping optical communication systems with non -uniform distribution, a distribution alignment convolutional neural network (DACNN)-aided nonlinear equalizer is proposed. The approach calibrates the equalizer using the probabilistic shaping prior distribution, which reduces the training complexity and improves the performance of the equalizer simultaneously. Experimental results show nonlinear equalization of 120 Gb/s PS 64QAM signals in a 375 km transmission scenario. The proposed DACNN equalizer improves the receiver sensitivity by 2.6 dB and 1.1 dB over the Volterra equalizer and convolutional neural network (CNN) equalizer, respectively. Meanwhile, DACNN converges with fewer training epochs than CNN, which provides great potential for mitigating the nonlinear distortion of PS signals in fiber optic communication systems. (c) 2024 Optica Publishing Group
引用
收藏
页码:1881 / 1887
页数:7
相关论文
共 32 条
  • [11] A multi-repeat mapping based probabilistic shaping coding method applied to data center optical networks
    Jing, Zexuan
    Tian, Qinghua
    Xin, Xiangjun
    Ding, Junjie
    Yu, Jianjun
    Pan, Xiaolong
    Zhang, Qi
    Zhu, Lei
    Tian, Feng
    Wang, Yongjun
    Gao, Ran
    [J]. OPTICAL FIBER TECHNOLOGY, 2021, 61
  • [12] Neural Network Nonlinear Equalizer in Long-Distance Coherent Optical Transmission Systems
    Kamiyama, T.
    Kobayashi, H.
    Iwashita, K.
    [J]. IEEE PHOTONICS TECHNOLOGY LETTERS, 2021, 33 (09) : 421 - 424
  • [13] Convolutional Neural Network-Aided DP-64 QAM Coherent Optical Communication Systems
    Li, Chao
    Wang, Yongjun
    Wang, Jingjing
    Yao, Haipeng
    Liu, Xinyu
    Gao, Ran
    Yang, Leijing
    Xu, Hui
    Zhang, Qi
    Ma, Pengjie
    Xin, Xiangjun
    [J]. JOURNAL OF LIGHTWAVE TECHNOLOGY, 2022, 40 (09) : 2880 - 2889
  • [14] Analytical Model of Nonlinear Fiber Propagation for General Dual-Polarization Four-Dimensional Modulation Formats
    Liang, Zhiwei
    Chen, Bin
    Lei, Yi
    Liga, Gabriele
    Alvarado, Alex
    [J]. JOURNAL OF LIGHTWAVE TECHNOLOGY, 2024, 42 (02) : 606 - 620
  • [15] Perturbation Theory-Aided Learned Digital Back-Propagation Scheme for Optical Fiber Nonlinearity Compensation
    Lin, Xiang
    Luo, Shenghang
    Soman, Sunish Kumar Orappanpara
    Dobre, Octavia A.
    Lampe, Lutz
    Chang, Deyuan
    Li, Chuandong
    [J]. JOURNAL OF LIGHTWAVE TECHNOLOGY, 2022, 40 (07) : 1981 - 1988
  • [16] Ren X., 2023, 21 INT C OPTICAL COM, P1
  • [17] Volterra-Assisted Optical Phase Conjugation: A Hybrid Optical-Digital Scheme for Fiber Nonlinearity Compensation
    Saavedra, Gabriel
    Liga, Gabriele
    Bayvel, Polina
    [J]. JOURNAL OF LIGHTWAVE TECHNOLOGY, 2019, 37 (10) : 2467 - 2479
  • [18] Low Complexity Neural Network Equalization Based on Multi-Symbol Output Technique for 200+Gbps IM/DD Short Reach Optical System
    Sang, Bohan
    Zhou, Wen
    Tan, Yuxuan
    Kong, Miao
    Wang, Chen
    Wang, Mingxu
    Zhao, Li
    Zhang, Jiao
    Yu, Jianjun
    [J]. JOURNAL OF LIGHTWAVE TECHNOLOGY, 2022, 40 (09) : 2890 - 2900
  • [19] Constant Composition Distribution Matching
    Schulte, Patrick
    Boecherer, Georg
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2016, 62 (01) : 430 - 434
  • [20] Complexity reduction over Bi-RNN-based nonlinearity mitigation in dual-pol fiber-optic communications via a CRNN-based approach
    Shahkarami, Abtin
    Yousefi, Mansoor
    Jaouen, Yves
    [J]. OPTICAL FIBER TECHNOLOGY, 2022, 74