CircTBC1D22A inhibits the progression of colorectal cancer through autophagy regulated via miR-1825/ATG14 axis

被引:3
作者
Sun, Jingbo [1 ,2 ,3 ]
Wu, Hongmei [1 ,2 ]
Luo, Junjie [3 ]
Qiu, Yue [1 ,2 ]
Li, Yanyan [1 ,2 ]
Xu, Yangwei [2 ]
Liu, Lixin [3 ]
Liu, Xiaolong [3 ]
Zhang, Qingling [1 ,2 ]
机构
[1] Southern Med Univ, Sch Basic Med Sci, Dept Pathol, Guangzhou 510515, Guangdong, Peoples R China
[2] Southern Med Univ, Guangdong Prov Peoples Hosp, Guangdong Acad Med Sci, Dept Pathol, Guangzhou 510080, Guangdong, Peoples R China
[3] Southern Med Univ, Dept Gen Surg, Affiliated Hosp 3, 183 West Zhongshan Ave, Guangzhou 510630, Guangdong, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
PROLIFERATION; CELLS;
D O I
10.1016/j.isci.2024.109168
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Distant metastasis is the main cause of death in patients with colorectal cancer (CRC). A better understanding of the mechanisms of metastasis can greatly improve the outcome of patients with CRC. Accumulating evidence suggests that circRNA plays pivotal roles in cancer progression and metastasis, especially acting as a miRNA sponge to regulate the expression of the target gene. A public database bioinformatics analysis found that miR-1825 was highly expressed in CRC tissues. In this study, miR-1825 was highly expressed in CRC tissues, which was positively correlated with lymph node metastasis and distant metastasis. In vitro and in vivo experiments confirmed that miR-1825 was positively correlated with the proliferation and migration of CRC cells. This event can be inhibited by circTBC1D22A. CircTBC1D22A can directly interact with miR-1825 and subsequently act as a miRNA sponge to regulate the expression of the target gene ATG14, which collectively advances the autophagy-mediated progression and metastasis of CRC.
引用
收藏
页数:18
相关论文
共 43 条
  • [1] Two distinct skeletal muscle microRNA signatures revealing the complex mechanism of sporadic ALS
    Aksu-Menges, Evrim
    Balci-Hayta, Burcu
    Bekircan-Kurt, Can Ebru
    Aydinoglu, Ayse Tulay
    Erdem-Ozdamar, Sevim
    Tan, Ersin
    [J]. ACTA NEUROLOGICA BELGICA, 2022, 122 (06) : 1499 - 1509
  • [2] Colorectal cancer
    Brenner, Hermann
    Kloor, Matthias
    Pox, Christian Peter
    [J]. LANCET, 2014, 383 (9927) : 1490 - 1502
  • [3] The Role of non-coding RNAs in colorectal cancer, with a focus on its autophagy
    Chen, Li
    He, Man
    Zhang, Meng
    Sun, Qiang
    Zeng, Sha
    Zhao, Hui
    Yang, Han
    Liu, Maolun
    Ren, Shan
    Meng, Xianli
    Xu, Haibo
    [J]. PHARMACOLOGY & THERAPEUTICS, 2021, 226
  • [4] Mutant p53 cancers reprogram macrophages to tumor supporting macrophages via exosomal miR-1246
    Cooks, Tomer
    Pateras, Ioannis S.
    Jenkins, Lisa M.
    Patel, Keval M.
    Robles, Ana I.
    Morris, James
    Forshew, Tim
    Appella, Ettore
    Gorgoulis, Vassilis G.
    Harris, Curtis C.
    [J]. NATURE COMMUNICATIONS, 2018, 9
  • [5] Classical and noncanonical functions of miRNAs in cancers
    Dragomir, Mihnea P. P.
    Knutsen, Erik
    Calin, George A. A.
    [J]. TRENDS IN GENETICS, 2022, 38 (04) : 379 - 394
  • [6] Autophagy inhibition elicits emergence from metastatic dormancy by inducing and stabilizing Pfkfb3 expression
    Flynn, Alyssa La Belle
    Calhoun, Benjamin C.
    Sharma, Arishya
    Chang, Jenny C.
    Almasan, Alexandru
    Schiemann, William P.
    [J]. NATURE COMMUNICATIONS, 2019, 10 (1)
  • [7] Role of Membrane Association and Atg14-Dependent Phosphorylation in Beclin-1-Mediated Autophagy
    Fogel, Adam I.
    Dlouhy, Brian J.
    Wang, Chunxin
    Ryu, Seung-Wook
    Neutzner, Albert
    Hasson, Samuel A.
    Sideris, Dionisia P.
    Abeliovich, Hagai
    Youle, Richard J.
    [J]. MOLECULAR AND CELLULAR BIOLOGY, 2013, 33 (18) : 3675 - 3688
  • [8] Autophagy in malignant transformation and cancer progression
    Galluzzi, Lorenzo
    Pietrocola, Federico
    Bravo-San Pedro, Jose Manuel
    Amaravadi, Ravi K.
    Baehrecke, Eric H.
    Cecconi, Francesco
    Codogno, Patrice
    Debnath, Jayanta
    Gewirtz, David A.
    Karantza, Vassiliki
    Kimmelman, Alec
    Kumar, Sharad
    Levine, Beth
    Maiuri, Maria Chiara
    Martin, Seamus J.
    Penninger, Josef
    Piacentini, Mauro
    Rubinsztein, David C.
    Simon, Hans-Uwe
    Simonsen, Anne
    Thorburn, Andrew M.
    Velasco, Guillermo
    Ryan, Kevin M.
    Kroemer, Guido
    [J]. EMBO JOURNAL, 2015, 34 (07) : 856 - 880
  • [9] circPARD3 drives malignant progression and chemoresistance of laryngeal squamous cell carcinoma by inhibiting autophagy through the PRKCI-Akt-mTOR pathway
    Gao, Wei
    Guo, Huina
    Niu, Min
    Zheng, Xiwang
    Zhang, Yuliang
    Xue, Xuting
    Bo, Yunfeng
    Guan, Xiaoya
    Li, Zhongxun
    Guo, Yujia
    He, Long
    Zhang, Yu
    Li, Li
    Cao, Jimin
    Wu, Yongyan
    [J]. MOLECULAR CANCER, 2020, 19 (01)
  • [10] Exosomes derived from Fusobacterium nucleatum-infected colorectal cancer cells facilitate tumour metastasis by selectively carrying miR-1246/92b-3p/27a-3p and CXCL16
    Guo, Songhe
    Chen, Jun
    Chen, Fangfang
    Zeng, Qiuyao
    Liu, Wan-Li
    Zhang, Ge
    [J]. GUT, 2021, 70 (08) : 1507 - 1519