A comprehensive evaluation of hydrological processes in a second-generation dynamic vegetation model

被引:5
作者
Zhou, Hao [1 ]
Tang, Jing [1 ,2 ,3 ]
Olin, Stefan [1 ]
Miller, Paul A. [1 ]
机构
[1] Lund Univ, Dept Phys Geog & Ecosyst Sci, SE-22362 Lund, Sweden
[2] Univ Copenhagen, Ctr Volatile Interact, Dept Biol, Copenhagen, Denmark
[3] VOLT Ctr Volatile Interact, Univ Pk 15, DK-2100 Copenhagen, Denmark
基金
新加坡国家研究基金会;
关键词
dynamic global vegetation model; evapotranspiration; hydrological processes evaluation; observation-based global gridded datasets; runoff; surface soil moisture; PART; 1; TERRESTRIAL BIOSPHERE; LAND; RUNOFF; CARBON; WATER; SCHEME; SATELLITE; EVAPOTRANSPIRATION; SIMULATIONS;
D O I
10.1002/hyp.15152
中图分类号
TV21 [水资源调查与水利规划];
学科分类号
081501 ;
摘要
The global water and carbon cycles are greatly influenced by terrestrial vegetation, making trustworthy representations of dynamic biosphere-hydrosphere interactions a crucial component of both ecosystem and climate models. This paper comprehensively evaluates the hydrological performance of a leading dynamic global vegetation model Lund-Potsdam-Jena General Ecosystem Simulator (LPJ-GUESS), using a broad range of the latest available global observation-based gridded datasets that cover the main components of the hydrological cycle. Overall, we find that the hydrological components modelled by LPJ-GUESS agree well with global gridded datasets of runoff, evapotranspiration and surface soil moisture, though there are discrepancies in some regions and periods. Furthermore, LPJ-GUESS accurately captures both inter- and intra-annual variations of runoff in most regions and catchment areas, including the Danube, Murray, Yangtze, Yenisei and Nile basins. Total evapotranspiration modelled by LPJ-GUESS agrees closely with the evapotranspiration estimates of the Global Land Evaporation Amsterdam Model and PML-V2 datasets, but with some disagreement in the individual components, especially for evaporation. The surface soil moisture simulated by LPJ-GUESS aligns with ESA-CCI (v5.3) surface soil moisture datasets in most regions, with greatest discrepancies in subarctic areas. We attribute these discrepancies to two main sources: (1) absent or poor representation of processes such as river routing, storage and supply of water bodies, and cropland irrigation; and (2) uncertainties in both reference datasets and input to the model, including precipitation, soil texture, and land use. The latest ecosystem model Lund-Potsdam-Jena General Ecosystem Simulator (LPJ-GUESS) can reproduce observed patterns of runoff, evapotranspiration, and soil surface moisture across a range of temporal and spatial scales. Evaluation of hydrological processes of LPJ-GUESS is critical for identifying important processes that should be developed to further and provides valuable insights for the improvement of this and other ecosystem models. image
引用
收藏
页数:17
相关论文
共 89 条
[31]  
He S., 2022, Earth System Science Data Discussions, V2022, P1
[32]   Improving the representation of high-latitude vegetation distribution in dynamic global vegetation models [J].
Horvath, Peter ;
Tang, Hui ;
Halvorsen, Rune ;
Stordal, Frode ;
Tallaksen, Lena Merete ;
Berntsen, Terje Koren ;
Bryn, Anders .
BIOGEOSCIENCES, 2021, 18 (01) :95-112
[33]   Harmonization of global land use change and management for the period 850-2100 (LUH2) for CMIP6 [J].
Hurtt, George C. ;
Chini, Louise ;
Sahajpal, Ritvik ;
Frolking, Steve ;
Bodirsky, Benjamin L. ;
Calvin, Katherine ;
Doelman, Jonathan C. ;
Fisk, Justin ;
Fujimori, Shinichiro ;
Goldewijk, Kees Klein ;
Hasegawa, Tomoko ;
Havlik, Peter ;
Heinimann, Andreas ;
Humpenoeder, Florian ;
Jungclaus, Johan ;
Kaplan, Jed O. ;
Kennedy, Jennifer ;
Krisztin, Tamas ;
Lawrence, David ;
Lawrence, Peter ;
Ma, Lei ;
Mertz, Ole ;
Pongratz, Julia ;
Popp, Alexander ;
Poulter, Benjamin ;
Riahi, Keywan ;
Shevliakova, Elena ;
Stehfest, Elke ;
Thornton, Peter ;
Tubiello, Francesco N. ;
van Vuuren, Detlef P. ;
Zhang, Xin .
GEOSCIENTIFIC MODEL DEVELOPMENT, 2020, 13 (11) :5425-5464
[34]   A global analysis of root distributions for terrestrial biomes [J].
Jackson, RB ;
Canadell, J ;
Ehleringer, JR ;
Mooney, HA ;
Sala, OE ;
Schulze, ED .
OECOLOGIA, 1996, 108 (03) :389-411
[35]   Calibration of a Distributed Hydrological Model in a Data-Scarce Basin Based on GLEAM Datasets [J].
Jin, Xin ;
Jin, Yanxiang .
WATER, 2020, 12 (03)
[36]   Reducing runoff by managing crop location at the catchment level, considering agronomic constraints at farm level [J].
Joannon, A. ;
Souchere, V. ;
Martin, P. ;
Papy, F. .
LAND DEGRADATION & DEVELOPMENT, 2006, 17 (05) :467-478
[37]  
Kim H., 2017, Data Integration and Analysis System (DIAS), DOI DOI 10.20783/DIAS.501
[38]   Impact of human population density on fire frequency at the global scale [J].
Knorr, W. ;
Kaminski, T. ;
Arneth, A. ;
Weber, U. .
BIOGEOSCIENCES, 2014, 11 (04) :1085-1102
[39]   The Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP): overview and description of models, simulations and climate diagnostics [J].
Lamarque, J. -F. ;
Shindell, D. T. ;
Josse, B. ;
Young, P. J. ;
Cionni, I. ;
Eyring, V. ;
Bergmann, D. ;
Cameron-Smith, P. ;
Collins, W. J. ;
Doherty, R. ;
Dalsoren, S. ;
Faluvegi, G. ;
Folberth, G. ;
Ghan, S. J. ;
Horowitz, L. W. ;
Lee, Y. H. ;
MacKenzie, I. A. ;
Nagashima, T. ;
Naik, V. ;
Plummer, D. ;
Righi, M. ;
Rumbold, S. T. ;
Schulz, M. ;
Skeie, R. B. ;
Stevenson, D. S. ;
Strode, S. ;
Sudo, K. ;
Szopa, S. ;
Voulgarakis, A. ;
Zeng, G. .
GEOSCIENTIFIC MODEL DEVELOPMENT, 2013, 6 (01) :179-206
[40]   Improving the accuracy of a grid-based distributed hydrological model using slope and river length corrections in a large river basin: case Mekong [J].
Lauri, Hannu ;
Kummu, Matti .
HYDROLOGY RESEARCH, 2014, 45 (4-5) :715-726