Trajectory Prediction of Heterogeneous Traffic Agents With Collision Vigilance and Avoidance

被引:2
作者
Awan, Mehwish [1 ]
Shin, Jitae [2 ]
Whangbo, Taeg Keun [1 ]
机构
[1] Gachon Univ, Dept Comp Engn, Seongnam 13120, South Korea
[2] Sungkyunkwan Univ, Dept Elect & Comp Engn, Suwon 16419, South Korea
来源
IEEE TRANSACTIONS ON INTELLIGENT VEHICLES | 2024年 / 9卷 / 01期
关键词
Trajectory; Hidden Markov models; Predictive models; Feature extraction; Task analysis; Behavioral sciences; Roads; Traffic agent trajectory prediction; collision avoidance network; deep learning; policy gradient reinforcement learning;
D O I
10.1109/TIV.2023.3293088
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Having knowledge of neighboring agents' motion patterns along with collision probability is a key challenge for heterogeneous agents' trajectory prediction. In this article, we present rich relational feature learning for efficacious and safe traffic agents' motion forecast. The global temporal information is leveraged using co-attention in feature space. The proposed model not only considers observed trajectories and agents' relational patterns but also themodel is learned to be conscious of collision likelihood. The extent of collision likelihood is computed for each agent's move and guided to long short-term memory network during model training. Ground-truth information about the collision alertness among neighboring nodes' trajectories is not available, therefore, reinforcement learning is employed for learning this task. Extensive evaluation results on Apolloscape and Argoverse benchmark datasets are conducted. Asubstantial performance improvement of the proposed method over the state-of-the-art methods is achieved in terms of average displacement error and the final displacement error.
引用
收藏
页码:93 / 102
页数:10
相关论文
共 47 条
[1]   Social LSTM: Human Trajectory Prediction in Crowded Spaces [J].
Alahi, Alexandre ;
Goel, Kratarth ;
Ramanathan, Vignesh ;
Robicquet, Alexandre ;
Li Fei-Fei ;
Savarese, Silvio .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :961-971
[2]   SCOUT: Socially-COnsistent and UndersTandable Graph Attention Network for Trajectory Prediction of Vehicles and VRUs [J].
Carrasco, S. ;
Fernandez-Llorca, D. ;
Sotelo, M. A. .
2021 32ND IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV), 2021, :1501-1508
[3]   Argoverse: 3D Tracking and Forecasting with Rich Maps [J].
Chang, Ming-Fang ;
Lambert, John ;
Sangkloy, Patsorn ;
Singh, Jagjeet ;
Bak, Slawomir ;
Hartnett, Andrew ;
Wang, De ;
Carr, Peter ;
Lucey, Simon ;
Ramanan, Deva ;
Hays, James .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :8740-8749
[4]  
Chung JY, 2014, Arxiv, DOI [arXiv:1412.3555, DOI 10.48550/ARXIV.1412.3555]
[5]  
Duvenaudt D, 2015, ADV NEUR IN, V28
[6]   TPNet: Trajectory Proposal Network for Motion Prediction [J].
Fang, Liangji ;
Jiang, Qinhong ;
Shi, Jianping ;
Zhou, Bolei .
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, :6796-6805
[7]   VectorNet: Encoding HD Maps and Agent Dynamics from Vectorized Representation [J].
Gao, Jiyang ;
Sun, Chen ;
Zhao, Hang ;
Shen, Yi ;
Anguelov, Dragomir ;
Li, Congcong ;
Schmid, Cordelia .
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2020), 2020, :11522-11530
[8]   Generative Adversarial Networks [J].
Goodfellow, Ian ;
Pouget-Abadie, Jean ;
Mirza, Mehdi ;
Xu, Bing ;
Warde-Farley, David ;
Ozair, Sherjil ;
Courville, Aaron ;
Bengio, Yoshua .
COMMUNICATIONS OF THE ACM, 2020, 63 (11) :139-144
[9]  
Graves A, 2012, STUD COMPUT INTELL, V385, P1, DOI [10.1162/neco.1997.9.1.1, 10.1007/978-3-642-24797-2]
[10]   Social GAN: Socially Acceptable Trajectories with Generative Adversarial Networks [J].
Gupta, Agrim ;
Johnson, Justin ;
Li Fei-Fei ;
Savarese, Silvio ;
Alahi, Alexandre .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :2255-2264