Learning Adaptive Neighborhoods for Graph Neural Networks

被引:3
|
作者
Saha, Avishkar [1 ]
Mendez, Oscar [1 ]
Russell, Chris [2 ]
Bowden, Richard [1 ]
机构
[1] Univ Surrey, Ctr Vis Speech & Signal Proc, Guildford, Surrey, England
[2] Univ Oxford, Oxford, England
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1109/ICCV51070.2023.02060
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Graph convolutional networks (GCNs) enable end-to-end learning on graph structured data. However, many works assume a given graph structure. When the input graph is noisy or unavailable, one approach is to construct or learn a latent graph structure. These methods typically fix the choice of node degree for the entire graph, which is suboptimal. Instead, we propose a novel end-to-end differentiable graph generator which builds graph topologies where each node selects both its neighborhood and its size. Our module can be readily integrated into existing pipelines involving graph convolution operations, replacing the predetermined or existing adjacency matrix with one that is learned, and optimized, as part of the general objective. As such it is applicable to any GCN. We integrate our module into trajectory prediction, point cloud classification and node classification pipelines resulting in improved accuracy over other structure-learning methods across a wide range of datasets and GCN backbones. We will release the code.
引用
收藏
页码:22484 / 22493
页数:10
相关论文
共 50 条
  • [1] Adaptive dependency learning graph neural networks
    Sriramulu, Abishek
    Fourrier, Nicolas
    Bergmeir, Christoph
    INFORMATION SCIENCES, 2023, 625 : 700 - 714
  • [2] Adaptive Transfer Learning on Graph Neural Networks
    Han, Xueting
    Huang, Zhenhuan
    An, Bang
    Bai, Jing
    KDD '21: PROCEEDINGS OF THE 27TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2021, : 565 - 574
  • [3] Graph Neural Networks with Adaptive Readouts
    Buterez, David
    Janet, Jon Paul
    Kiddle, Steven J.
    Oglic, Dino
    Lio, Pietro
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [4] Graph Neural Networks with Adaptive Residual
    Liu, Xiaorui
    Ding, Jiayuan
    Jin, Wei
    Xu, Han
    Ma, Yao
    Liu, Zitao
    Tang, Jiliang
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [5] Graph Neural Networks With Adaptive Structures
    Zhang, Zepeng
    Lu, Songtao
    Huang, Zengfeng
    Zhao, Ziping
    IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2025, 19 (01) : 181 - 194
  • [6] Adaptive Graph Convolutional Neural Networks
    Li, Ruoyu
    Wang, Sheng
    Zhu, Feiyun
    Huang, Junzhou
    THIRTY-SECOND AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTIETH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / EIGHTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2018, : 3546 - 3553
  • [7] Adaptive Diffusion in Graph Neural Networks
    Zhao, Jialin
    Dong, Yuxiao
    Ding, Ming
    Kharlamov, Evgeny
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [8] Learning graph normalization for graph neural networks
    Chen, Yihao
    Tang, Xin
    Qi, Xianbiao
    Li, Chun-Guang
    Xiao, Rong
    NEUROCOMPUTING, 2022, 493 : 613 - 625
  • [9] Learning Graph Matching with Graph Neural Networks
    Dobler, Kalvin
    Riesen, Kaspar
    ARTIFICIAL NEURAL NETWORKS IN PATTERN RECOGNITION, ANNPR 2024, 2024, 15154 : 3 - 12
  • [10] GRAPH-ADAPTIVE ACTIVATION FUNCTIONS FOR GRAPH NEURAL NETWORKS
    Iancu, Bianca
    Ruiz, Luana
    Ribeiro, Alejandro
    Isufi, Elvin
    PROCEEDINGS OF THE 2020 IEEE 30TH INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2020,