Tensor recovery based on rank adaptive and non-convex methods

被引:0
作者
Liu C. [1 ]
Zhang H. [1 ]
Fan H. [1 ]
Li Y. [1 ]
机构
[1] Department of Information and Computing Science, College of Science, Northwest A&F University, Yangling, Shaanxi
来源
Optik | 2023年 / 292卷
关键词
Minimax logarithmic concave penalty; Rank adaptive; Tensor recovery;
D O I
10.1016/j.ijleo.2023.171396
中图分类号
学科分类号
摘要
The growing popularity of tensor singular value decomposition (T-SVD) in tensor recovery problems and the N-tubal rank can be applied to higher order tensors. However, this method faces new challenges as it does not fully use the rank prior information of tensors and lacks non-convex relaxation methods. Thus, this paper applies a new non-convex function, called Minimax Logarithmic Concave Penalty (MLCP), based on the N-tubal rank method. Two MLCP models based on N-tubal rank are introduced for solving low-rank tensor completion (LRTC) and tensor robust principal component analysis (TRPCA) problems, along with corresponding solving algorithms. The effectiveness and superiority of these models are demonstrated through experiments on real datasets. © 2023 Elsevier GmbH
引用
收藏
相关论文
共 67 条
[1]  
Kolda T.G., Bader B.W., Tensor decompositions and applications, SIAM Rev., 51, 3, pp. 455-500, (2009)
[2]  
Huang Y.-M., Yan H.-Y., Wen Y.-W., Yang X., Rank minimization with applications to image noise removal, Inform. Sci., 429, pp. 147-163, (2018)
[3]  
Madathil B., George S.N., Twist tensor total variation regularized-reweighted nuclear norm based tensor completion for video missing area recovery, Inform. Sci., 423, pp. 376-397, (2018)
[4]  
Wang Y., Meng D., Yuan M., Sparse recovery: from vectors to tensors, Natl. Sci. Rev., 5, 5, pp. 756-767, (2018)
[5]  
Zhao X.-L., Xu W.-H., Jiang T.-X., Wang Y., Ng M.K., Deep plug-and-play prior for low-rank tensor completion, Neurocomputing, 400, pp. 137-149, (2020)
[6]  
Fu X., Ma W.-K., Bioucas-Dias J.M., Chan T.-H., Semiblind hyperspectral unmixing in the presence of spectral library mismatches, IEEE Trans. Geosci. Remote Sens., 54, 9, pp. 5171-5184, (2016)
[7]  
Li S., Dian R., Fang L., Bioucas-Dias J.M., Fusing hyperspectral and multispectral images via coupled sparse tensor factorization, IEEE Trans. Image Process., 27, 8, pp. 4118-4130, (2018)
[8]  
Zheng Y.-B., Huang T.-Z., Zhao X.-L., Jiang T.-X., Ma T.-H., Ji T.-Y., Mixed noise removal in hyperspectral image via low-fibered-rank regularization, IEEE Trans. Geosci. Remote Sens., 58, 1, pp. 734-749, (2019)
[9]  
Yang J.-H., Zhao X.-L., Ma T.-H., Chen Y., Huang T.-Z., Ding M., Remote sensing images destriping using unidirectional hybrid total variation and nonconvex low-rank regularization, J. Comput. Appl. Math., 363, pp. 124-144, (2020)
[10]  
Ding M., Huang T.-Z., Ji T.-Y., Zhao X.-L., Yang J.-H., Low-rank tensor completion using matrix factorization based on tensor train rank and total variation, J. Sci. Comput., 81, 2, pp. 941-964, (2019)