Diffusion Model Based Knee Cartilage Segmentation in MRI

被引:0
作者
Mudiyam, Veerasravanthi [1 ]
Das, Ayantika [1 ]
Ram, Keerthi [2 ]
Sivaprakasam, Mohanasankar [1 ,2 ]
机构
[1] Indian Inst Technol, Chennai, Tamil Nadu, India
[2] IIT Madras, Healthcare Technol Innovat Ctr, Chennai, Tamil Nadu, India
来源
DEEP GENERATIVE MODELS, DGM4MICCAI 2023 | 2024年 / 14533卷
关键词
D O I
10.1007/978-3-031-53767-7_20
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
MRI imaging is crucial for knee joint analysis in osteoarthritis (OA) diagnosis. The segmentation and thickness estimation of knee cartilage are vital steps for OA assessment. Most deep learning algorithms typically produce a single segmentation mask or rely on architectural modifications like Dropout to generate multiple outputs. We propose an alternative approach using Denoising Diffusion Models (DDMs) to yield multiple variants of segmentation outputs for knee cartilage segmentation and thus offer a mechanism to study predictive uncertainty in unseen test data. We further propose to integrate sparsity adaptive losses to supervise the diffusion process to handle intricate knee cartilage structures. We could empirically validate that DDM-based models predict more meaningful uncertainties when compared to Dropout based mechanisms. We have also quantitatively shown that DDM-based multiple segmentation generators are resilient to noise and can generalize to unseen data acquisition setups.
引用
收藏
页码:204 / 213
页数:10
相关论文
共 16 条
[1]   Automated segmentation of knee bone and cartilage combining statistical shape knowledge and convolutional neural networks: Data from the Osteoarthritis Initiative [J].
Ambellan, Felix ;
Tack, Alexander ;
Ehlke, Moritz ;
Zachow, Stefan .
MEDICAL IMAGE ANALYSIS, 2019, 52 :109-118
[2]   Diagnosis of osteoarthritis: Imaging [J].
Braun, Hillary J. ;
Gold, Garry E. .
BONE, 2012, 51 (02) :278-288
[3]  
Chen J., 2021, arXiv, DOI 10.48550/arXiv:2102.04306
[4]  
Desai A. D., 2022, arXiv
[5]  
Ho J., 2020, Advances in Neural Information Processing Systems, V33, P6840
[6]   nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation [J].
Isensee, Fabian ;
Jaeger, Paul F. ;
Kohl, Simon A. A. ;
Petersen, Jens ;
Maier-Hein, Klaus H. .
NATURE METHODS, 2021, 18 (02) :203-+
[7]  
Kervadec H, 2019, PR MACH LEARN RES, V102, P285
[8]   Position-Prior Clustering-Based Self-attention Module for Knee Cartilage Segmentation [J].
Liang, Dong ;
Liu, Jun ;
Wang, Kuanquan ;
Luo, Gongning ;
Wang, Wei ;
Li, Shuo .
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2022, PT V, 2022, 13435 :193-202
[9]  
Ma J, 2020, PR MACH LEARN RES, V121, P479
[10]  
Peng W, 2023, Arxiv, DOI arXiv:2212.08034