Liver fibrosis analysis using digital pathology

被引:0
|
作者
Miyaaki, Hisamitsu [1 ]
Miuma, Satoshi [1 ]
Fukusima, Masanori [1 ]
Sasaki, Ryu [1 ]
Haraguchi, Masafumi [1 ]
Nakao, Yasuhiko [1 ]
Akazawa, Yuko [1 ,2 ]
Nakao, Kazuhiko [1 ]
机构
[1] Nagasaki Univ, Grad Sch Biomed Sci, Dept Gastroenterol & Hepatol, 1-7-1 Sakamoto, Nagasaki 8528501, Japan
[2] Nagasaki Univ, Dept Histol & Cell Biol, Grad Sch Biomed Sci, Nagasaki, Japan
关键词
Liver fibrosis; Digital pathology; Artificial intelligence; Liver disease; Liver cancer; IMAGE-ANALYSIS; ELASTIC FIBERS; MICROSCOPY;
D O I
10.1007/s00795-024-00395-y
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Digital pathology has enabled the noninvasive quantification of pathological parameters. In addition, the combination of digital pathology and artificial intelligence has enabled the analysis of a vast amount of information, leading to the sharing of much information and the elimination of knowledge gaps. Fibrosis, which reflects chronic inflammation, is the most important pathological parameter in chronic liver diseases, such as viral hepatitis and metabolic dysfunction-associated steatotic liver disease. It has been reported that the quantitative evaluation of various fibrotic parameters by digital pathology can predict the prognosis of liver disease and hepatocarcinogenesis. Liver fibrosis evaluation methods include 1 fiber quantification, 2 elastin and collagen quantification, 3 s harmonic generation/two photon excitation fluorescence (SHG/TPE) microscopy, and 4 Fibronest (TM). In this review, we provide an overview of role of digital pathology on the evaluation of fibrosis in liver disease and the characteristics of recent methods to assess liver fibrosis.
引用
收藏
页码:161 / 166
页数:6
相关论文
共 50 条
  • [41] Computational pathology definitions, best practices, and recommendations for regulatory guidance: a white paper from the Digital Pathology Association
    Abels, Esther
    Pantanowitz, Liron
    Aeffner, Famke
    Zarella, Mark D.
    van der Laak, Jeroen
    Bui, Marilyn M.
    Vemuri, Venkata N. P.
    Parwani, Anil V.
    Gibbs, Jeff
    Agosto-Arroyo, Emmanuel
    Beck, Andrew H.
    Kozlowski, Cleopatra
    JOURNAL OF PATHOLOGY, 2019, 249 (03) : 286 - 294
  • [42] Correlation of liver fibrosis quantification by morphometry using HepaScan with the analysis of liver biopsies. A pilot study
    Aleman-Garcia, Nathalie
    Garcia-Garcia, Jose A.
    Duran-Padilla, Marco A.
    Ceballos, Maria E. Gutierrez-Diaz-de
    Rizo-Pica, Thelma
    del C. Susunaga-Notario, Ana
    Sanchez-Perez, Celia
    GACETA MEDICA DE MEXICO, 2023, 159 (02): : 133 - 139
  • [43] RFID analysis of the complexity of cellular pathology workflow-An opportunity for digital pathology
    Browning, Lisa
    White, Kieron
    Siiankoski, Darrin
    Colling, Richard
    Roskell, Derek
    Fryer, Eve
    Hemsworth, Helen
    Roberts-Gant, Sharon
    Roelofsen, Ruud
    Rittscher, Jens
    Verrill, Clare
    FRONTIERS IN MEDICINE, 2022, 9
  • [44] Texture analysis of liver fibrosis microscopic images: a study on the effect of biomarkers
    Amin, Amr
    Mahmoud-Ghoneim, Doaa
    ACTA BIOCHIMICA ET BIOPHYSICA SINICA, 2011, 43 (03) : 193 - 203
  • [45] Personalizable AI platform for universal access to research and diagnosis in digital pathology
    Jesus, Rui
    Bastiao, Luis
    Sousa, Vitor
    Carvalho, Lina
    Gonzalez, Dibet Garcia
    Carias, Joao
    Costa, Carlos
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2023, 242
  • [46] Predict Early Recurrence of Resectable Hepatocellular Carcinoma Using Multi-Dimensional Artificial Intelligence Analysis of Liver Fibrosis
    Liu, I-Ting
    Yen, Chia-Sheng
    Wang, Wen-Lung
    Tsai, Hung-Wen
    Chu, Chang-Yao
    Chang, Ming-Yu
    Hou, Ya-Fu
    Yen, Chia-Jui
    CANCERS, 2021, 13 (21)
  • [47] Validation of cytopathology specimens for digital pathology
    Miguel, Renata
    Gregorio, Bianca
    Santos, Carolina
    Andriotti, Carolina
    Valle, Luciane
    Saieg, Mauro
    CYTOPATHOLOGY, 2023, 34 (04) : 302 - 307
  • [48] Polarised light scanner for digital pathology
    Al Sheikhyaqoob, Dunia
    Oliveira, Andre
    Fella, Manuel
    Laferty, Don
    Niedobitek, Gerald
    VIRCHOWS ARCHIV, 2024,
  • [49] Hierarchical graph representations in digital pathology
    Pati, Pushpak
    Jaume, Guillaume
    Foncubierta-Rodriguez, Antonio
    Feroce, Florinda
    Anniciello, Anna Maria
    Scognamiglio, Giosue
    Brancati, Nadia
    Fiche, Maryse
    Dubruc, Estelle
    Riccio, Daniel
    Di Bonito, Maurizio
    De Pietro, Giuseppe
    Botti, Gerardo
    Thiran, Jean-Philippe
    Frucci, Maria
    Goksel, Orcun
    Gabrani, Maria
    MEDICAL IMAGE ANALYSIS, 2022, 75
  • [50] UNSUPERVISED ANOMALY DETECTION IN DIGITAL PATHOLOGY USING GANS
    Poceviciute, Milda
    Eilertsen, Gabriel
    Lundstrom, Claes
    2021 IEEE 18TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2021, : 1878 - 1882