Liver fibrosis analysis using digital pathology

被引:0
|
作者
Miyaaki, Hisamitsu [1 ]
Miuma, Satoshi [1 ]
Fukusima, Masanori [1 ]
Sasaki, Ryu [1 ]
Haraguchi, Masafumi [1 ]
Nakao, Yasuhiko [1 ]
Akazawa, Yuko [1 ,2 ]
Nakao, Kazuhiko [1 ]
机构
[1] Nagasaki Univ, Grad Sch Biomed Sci, Dept Gastroenterol & Hepatol, 1-7-1 Sakamoto, Nagasaki 8528501, Japan
[2] Nagasaki Univ, Dept Histol & Cell Biol, Grad Sch Biomed Sci, Nagasaki, Japan
关键词
Liver fibrosis; Digital pathology; Artificial intelligence; Liver disease; Liver cancer; IMAGE-ANALYSIS; ELASTIC FIBERS; MICROSCOPY;
D O I
10.1007/s00795-024-00395-y
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Digital pathology has enabled the noninvasive quantification of pathological parameters. In addition, the combination of digital pathology and artificial intelligence has enabled the analysis of a vast amount of information, leading to the sharing of much information and the elimination of knowledge gaps. Fibrosis, which reflects chronic inflammation, is the most important pathological parameter in chronic liver diseases, such as viral hepatitis and metabolic dysfunction-associated steatotic liver disease. It has been reported that the quantitative evaluation of various fibrotic parameters by digital pathology can predict the prognosis of liver disease and hepatocarcinogenesis. Liver fibrosis evaluation methods include 1 fiber quantification, 2 elastin and collagen quantification, 3 s harmonic generation/two photon excitation fluorescence (SHG/TPE) microscopy, and 4 Fibronest (TM). In this review, we provide an overview of role of digital pathology on the evaluation of fibrosis in liver disease and the characteristics of recent methods to assess liver fibrosis.
引用
收藏
页码:161 / 166
页数:6
相关论文
共 50 条
  • [31] Colour in digital pathology: a review
    Clarke, Emily L.
    Treanor, Darren
    HISTOPATHOLOGY, 2017, 70 (02) : 153 - 163
  • [32] Explainability and causability in digital pathology
    Plass, Markus
    Kargl, Michaela
    Kiehl, Tim-Rasmus
    Regitnig, Peter
    Geissler, Christian
    Evans, Theodore
    Zerbe, Norman
    Carvalho, Rita
    Holzinger, Andreas
    Mueller, Heimo
    JOURNAL OF PATHOLOGY CLINICAL RESEARCH, 2023, 9 (04) : 251 - 260
  • [33] On the concept of objectivity in digital image analysis in pathology
    Tadrous, Paul J.
    PATHOLOGY, 2010, 42 (03) : 207 - 211
  • [34] Digital pathology: Review of current opportunities and challenges for oral pathologists
    Liu, Yingci
    Pantanowitz, Liron
    JOURNAL OF ORAL PATHOLOGY & MEDICINE, 2019, 48 (04) : 263 - 269
  • [36] QuPath: The global impact of an open source digital pathology system
    Humphries, M. P.
    Maxwell, P.
    Salto-Tellez, M.
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2021, 19 : 852 - 859
  • [37] Whole Slide Image Quality in Digital Pathology: Review and Perspectives
    Brixtel, Romain
    Bougleux, Sebastien
    Lezoray, Olivier
    Caillot, Yann
    Lemoine, Benoit
    Fontaine, Mathieu
    Nebati, Dalal
    Renouf, Arnaud
    IEEE ACCESS, 2022, 10 : 131005 - 131035
  • [38] Artificial Intelligence and Image Analysis-Assisted Diagnosis for Fibrosis Stage of Metabolic Dysfunction-Associated Steatotic Liver Disease Using Ultrasonography: A Pilot Study
    Fujii, Itsuki
    Matsumoto, Naoki
    Ogawa, Masahiro
    Konishi, Aya
    Kaneko, Masahiro
    Watanabe, Yukinobu
    Masuzaki, Ryota
    Kogure, Hirofumi
    Koizumi, Norihiro
    Sugitani, Masahiko
    DIAGNOSTICS, 2024, 14 (22)
  • [39] Digital image analysis and artificial intelligence in pathology diagnostics-the Swiss view
    Berezowska, Sabina
    Cathomas, Gieri
    Grobholz, Rainer
    Henkel, Maurice
    Jochum, Wolfram
    Koelzer, Viktor H.
    Kreutzfeldt, Mario
    Mertz, Kirsten D.
    Rossle, Matthias
    Soldini, Davide
    Zlobec, Inti
    Janowczyk, Andrew
    PATHOLOGIE, 2023, 44 (03): : 222 - 224
  • [40] Identify liver fibrosis associated hub genes using integrated bioinformatics analysis
    Jin, Li
    Cheng, Zhuo
    Huang, Hanfei
    Deng, Lin
    Ma, Meidiao
    Qu, Siming
    Yuan, Bo
    Fang, Yuan
    Ye, Youzhi
    Zeng, Zhong
    GENE REPORTS, 2024, 37