Liver fibrosis analysis using digital pathology

被引:0
|
作者
Miyaaki, Hisamitsu [1 ]
Miuma, Satoshi [1 ]
Fukusima, Masanori [1 ]
Sasaki, Ryu [1 ]
Haraguchi, Masafumi [1 ]
Nakao, Yasuhiko [1 ]
Akazawa, Yuko [1 ,2 ]
Nakao, Kazuhiko [1 ]
机构
[1] Nagasaki Univ, Grad Sch Biomed Sci, Dept Gastroenterol & Hepatol, 1-7-1 Sakamoto, Nagasaki 8528501, Japan
[2] Nagasaki Univ, Dept Histol & Cell Biol, Grad Sch Biomed Sci, Nagasaki, Japan
关键词
Liver fibrosis; Digital pathology; Artificial intelligence; Liver disease; Liver cancer; IMAGE-ANALYSIS; ELASTIC FIBERS; MICROSCOPY;
D O I
10.1007/s00795-024-00395-y
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Digital pathology has enabled the noninvasive quantification of pathological parameters. In addition, the combination of digital pathology and artificial intelligence has enabled the analysis of a vast amount of information, leading to the sharing of much information and the elimination of knowledge gaps. Fibrosis, which reflects chronic inflammation, is the most important pathological parameter in chronic liver diseases, such as viral hepatitis and metabolic dysfunction-associated steatotic liver disease. It has been reported that the quantitative evaluation of various fibrotic parameters by digital pathology can predict the prognosis of liver disease and hepatocarcinogenesis. Liver fibrosis evaluation methods include 1 fiber quantification, 2 elastin and collagen quantification, 3 s harmonic generation/two photon excitation fluorescence (SHG/TPE) microscopy, and 4 Fibronest (TM). In this review, we provide an overview of role of digital pathology on the evaluation of fibrosis in liver disease and the characteristics of recent methods to assess liver fibrosis.
引用
收藏
页码:161 / 166
页数:6
相关论文
共 50 条
  • [1] Aramchol improves hepatic fibrosis in MASH: Results of multimodality assessment using both conventional and digital pathology
    Ratziu, Vlad
    Yilmaz, Yusuf
    Lazas, Don
    Friedman, Scott L.
    Lackner, Caroline
    Behling, Cynthia
    Cummings, Oscar W.
    Chen, Li
    Petitjean, Matthieu
    Gilgun-Sherki, Yossi
    Gorfine, Tali
    Kadosh, Shaul
    Eyal, Eli
    Sanyal, Arun J.
    HEPATOLOGY, 2024,
  • [2] Review of the current state of digital image analysis in breast pathology
    Chang, Martin C.
    Mrkonjic, Miralem
    BREAST JOURNAL, 2020, 26 (06) : 1208 - 1212
  • [3] Future Practices of Breast Pathology Using Digital and Computational Pathology
    Hanna, Matthew G.
    Brogi, Edi
    ADVANCES IN ANATOMIC PATHOLOGY, 2023, 30 (06) : 421 - 433
  • [4] Tissue Intrinsic Fluorescence Spectra-Based Digital Pathology of Liver Fibrosis by Marker-Controlled Segmentation
    Saitou, Takashi
    Takanezawa, Sota
    Ninomiya, Hiroko
    Watanabe, Takao
    Yamamoto, Shin
    Hiasa, Yoichi
    Imamura, Takeshi
    FRONTIERS IN MEDICINE, 2018, 5
  • [5] Survey of liver pathologists to assess attitudes towards digital pathology and artificial intelligence
    McGenity, Clare
    Randell, Rebecca
    Bellamy, Christopher
    Burt, Alastair
    Cratchley, Alyn
    Goldin, Robert
    Hubscher, Stefan G.
    Neil, Desley A. H.
    Quaglia, Alberto
    Tiniakos, Dina
    Wyatt, Judy
    Treanor, Darren
    JOURNAL OF CLINICAL PATHOLOGY, 2024, 77 (01) : 27 - 33
  • [6] Applications of Digital Pathology in Cancer: A Comprehensive Review
    Omar, Mohamed
    Alexanderani, Mohammad K.
    Valencia, Itzel
    Loda, Massimo
    Marchionni, Luigi
    ANNUAL REVIEW OF CANCER BIOLOGY, 2024, 8 : 245 - 268
  • [7] The future of pathology is digital
    Pallua, J. D.
    Brunner, A.
    Zelger, B.
    Schirmer, M.
    Haybaeck, J.
    PATHOLOGY RESEARCH AND PRACTICE, 2020, 216 (09)
  • [8] Microscope-Based Automated Quantification of Liver Fibrosis in Mice Using a Deep Learning Algorithm
    Ramot, Yuval
    Deshpande, Ameya
    Morello, Virginia
    Michieli, Paolo
    Shlomov, Tehila
    Nyska, Abraham
    TOXICOLOGIC PATHOLOGY, 2021, 49 (05) : 1126 - 1133
  • [9] Introduction to digital pathology and computer-aided pathology
    Nam, Soojeong
    Chong, Yosep
    Jung, Chan Kwon
    Kwak, Tae-Yeong
    Lee, Ji Youl
    Park, Jihwan
    Rho, Mi Jung
    Go, Heounjeong
    JOURNAL OF PATHOLOGY AND TRANSLATIONAL MEDICINE, 2020, 54 (02) : 125 - 134
  • [10] Diagnosis of Liver Fibrosis Using Artificial Intelligence: A Systematic Review
    Popa, Stefan Lucian
    Ismaiel, Abdulrahman
    Abenavoli, Ludovico
    Padureanu, Alexandru Marius
    Dita, Miruna Oana
    Bolchis, Roxana
    Munteanu, Mihai Alexandru
    Brata, Vlad Dumitru
    Pop, Cristina
    Bosneag, Andrei
    Dumitrascu, Dinu Iuliu
    Barsan, Maria
    David, Liliana
    MEDICINA-LITHUANIA, 2023, 59 (05):