In situ dissolved polypropylene prediction by Raman and ATR-IR spectroscopy for its recycling

被引:2
|
作者
Ferchichi, Sofiane [1 ,2 ,3 ]
Sheibat-Othman, Nida [2 ]
Boyron, Olivier [3 ]
Bonnin, Charles [1 ]
Norsic, Sebastien [3 ]
Rey-Bayle, Maud [1 ]
Monteil, Vincent [3 ]
机构
[1] IFP Energies Nouvelles, F-69360 Solaize, France
[2] Univ Claude Bernard Lyon 1, LAGEPP, CNRS, UMR 5007, F-69622 Villeurbanne, France
[3] Univ Claude Bernard Lyon 1, CNRS, UMR 5128, CP2M, F-69616 Villeurbanne, France
关键词
ORGANIC-SOLVENTS; DISSOLUTION; POLYOLEFINS; FILMS;
D O I
10.1039/d4ay00667d
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Monitoring the dissolution of polyolefins using online spectroscopy analysis is addressed in this work, with the aim of optimizing plastic recycling processes. Two in situ spectroscopic methods are used to predict the dissolved polymer content: Raman spectroscopy and attenuated total reflectance infrared spectroscopy. Commercially available polypropylenes are considered. Different solvents are selected based on their affinity with polypropylene. Partial least squares regression is employed to identify models predicting the polymer concentration for each solvent from the online spectra. Raman spectroscopy was found to give a better prediction. It was therefore used to study different parameters influencing the dissolution process, such as solvent type, temperature and polymer form.
引用
收藏
页码:3109 / 3117
页数:9
相关论文
共 50 条
  • [31] Mechanistic Insights into the Reduction of CO2 on Tin Electrodes using in Situ ATR-IR Spectroscopy
    Baruch, Maor F.
    Pander, James E., III
    White, James L.
    Bocarsly, Andrew B.
    ACS CATALYSIS, 2015, 5 (05): : 3148 - 3156
  • [32] Reconstruction of Ice Surfaces upon Acetone Adsorption: An In Situ ATR-IR Modulation Excitation Spectroscopy Study
    Wang, Xianwei
    Buergi, Thomas
    JOURNAL OF PHYSICAL CHEMISTRY C, 2021, 125 (45): : 25284 - 25289
  • [33] In situ ATR-IR spectroscopy:: a powerful tool to elucidate the catalytic oxidation of veratryl alcohol in aqueous media
    Kervinen, K
    Allmendinger, M
    Leskelä, M
    Repo, T
    Rieger, B
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2003, 5 (20) : 4450 - 4454
  • [34] In-situ ATR-IR Spectroscopy: Monitoring Hydrogenation of CO2 and Formation of Formic Acid
    Ehnes, Christoph
    Lucas, Martin
    Claus, Peter
    CHEMIE INGENIEUR TECHNIK, 2016, 88 (10) : 1474 - 1479
  • [35] In situ ATR-IR investigation of L-lysine adsorption on montmorillonite
    Kitadai, Norio
    Yokoyama, Tadashi
    Nakashima, Satoru
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2009, 338 (02) : 395 - 401
  • [36] Potential of ATR-IR spectroscopy in applications to supercritical fluids and liquefied gases
    Kazarian, SG
    Flichy, NMB
    Coombs, D
    Poulter, G
    AMERICAN LABORATORY, 2001, 33 (16) : 44 - +
  • [37] Properties of aqueous fluids up to 200°C by ATR-IR spectroscopy
    Masuda, T
    Nakasmma, S
    Famin, V
    Kaneda, H
    GEOCHIMICA ET COSMOCHIMICA ACTA, 2003, 67 (18) : A276 - A276
  • [38] Sorption of uranyl ions on titanium oxide studied by ATR-IR spectroscopy
    Lefevre, G.
    Kneppers, J.
    Fedoroff, M.
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2008, 327 (01) : 15 - 20
  • [39] In-situ ATR-IR study of water on gold electrode surface
    Futamata, M.
    Surface Science, 1999, 427-428 : 179 - 183
  • [40] In-situ ATR-IR study of water on gold electrode surface
    Futamata, M
    SURFACE SCIENCE, 1999, 427-28 : 179 - 183