Recovery Conditions in Weighted Sparse Phase Retrieval via Weighted ℓq(0<q≤1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _q\, (0<q\le 1)$$\end{document} Minimization

被引:0
|
作者
Haiye Huo [1 ]
Li Xiao [2 ]
机构
[1] Nanchang University,Department of Mathematics, School of Mathematics and Computer Sciences
[2] University of Science and Technology of China,Department of Electronic Engineering and Information Science
关键词
Phase retrieval; Weighted ; minimization; Weighted sparsity; Weighted null space property; Weighted strong restricted isometry property;
D O I
10.1007/s00034-024-02735-w
中图分类号
学科分类号
摘要
In this paper, we generalize the conditions for the exact or stable recovery of weighted k-sparse signals in weighted sparse phase retrieval in our previous work [11] from the weighted ℓ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _1$$\end{document} minimization to the weighted ℓq(0<q≤1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _q\, (0<q\le 1)$$\end{document} minimization in a broad sense. Specifically, we first present that the weighted null space property (WNSP) is a sufficient and necessary condition to guarantee the exact recovery of a weighted k-sparse signal from its noiseless phaseless measurements via the weighted ℓq(0<q≤1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _q\, (0<q\le 1)$$\end{document} minimization in both the real and complex cases. In addition, we establish a general strong weighted restricted isometry property (SWRIP) condition for the stable recovery of a weighted k-sparse signal from its noisy phaseless measurements via the weighted ℓq(0<q≤1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _q\, (0<q\le 1)$$\end{document} minimization in the real case.
引用
收藏
页码:5878 / 5896
页数:18
相关论文
共 50 条