共 50 条
- [21] k Block Sparse Vector Recovery via Block ℓ1-ℓ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _1-\ell _2$$\end{document} Minimization Circuits, Systems, and Signal Processing, 2023, 42 (5) : 2897 - 2915
- [22] Beyond sparsity: Recovering structured representations by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\ell}^1$\end{document} minimization and greedy algorithms Advances in Computational Mathematics, 2008, 28 (1) : 23 - 41
- [23] k-Sparse Vector Recovery via ℓ1-αℓ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _1-\alpha \ell _2$$\end{document} Local Minimization Journal of Optimization Theory and Applications, 2024, 201 (1) : 75 - 102
- [24] k-sparse vector recovery via Truncated ℓ1-ℓ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _1-\ell _2$$\end{document} local minimization Optimization Letters, 2024, 18 (1) : 291 - 305
- [25] Nonconvex ℓp-αℓq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _p-\alpha \ell _q$$\end{document} minimization method and p-RIP condition for stable recovery of approximately k-sparse signals Computational and Applied Mathematics, 2024, 43 (1)
- [26] ON SOLID CORES AND HULLS OF WEIGHTED BERGMAN SPACES Aμ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_{\mu }^1$$\end{document} Journal of Mathematical Sciences, 2022, 266 (2) : 239 - 250
- [27] Note on minimization of quasi M♮\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{\natural }$$\end{document}-convex functions Japan Journal of Industrial and Applied Mathematics, 2024, 41 (2) : 857 - 880
- [28] A smoothing SQP framework for a class of composite Lq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_q$$\end{document} minimization over polyhedron Mathematical Programming, 2016, 158 (1-2) : 467 - 500
- [29] Computing Sparse Representation in a Highly Coherent Dictionary Based on Difference of L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_1$$\end{document} and L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_2$$\end{document} Journal of Scientific Computing, 2015, 64 (1) : 178 - 196
- [30] Improved ℓ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\ell }^{1}}$$\end{document}-tracker using robust PCA and random projection Machine Vision and Applications, 2016, 27 (4) : 577 - 583