Assessing the efficacy of 2D and 3D CNN algorithms in OCT-based glaucoma detection

被引:3
作者
Rasel, Rafiul Karim [1 ]
Wu, Fengze [1 ,2 ]
Chiariglione, Marion [1 ]
Choi, Stacey S. [1 ,4 ]
Doble, Nathan [1 ,4 ]
Gao, Xiaoyi Raymond [1 ,2 ,3 ]
机构
[1] Ohio State Univ, Dept Ophthalmol & Visual Sci, Columbus, OH 43212 USA
[2] Ohio State Univ, Dept Biomed Informat, Columbus, OH 43210 USA
[3] Ohio State Univ, Div Human Genet, Columbus, OH 43210 USA
[4] Ohio State Univ, Coll Optometry, Columbus, OH 43210 USA
来源
SCIENTIFIC REPORTS | 2024年 / 14卷 / 01期
基金
美国国家卫生研究院;
关键词
PREVALENCE;
D O I
10.1038/s41598-024-62411-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Glaucoma is a progressive neurodegenerative disease characterized by the gradual degeneration of retinal ganglion cells, leading to irreversible blindness worldwide. Therefore, timely and accurate diagnosis of glaucoma is crucial, enabling early intervention and facilitating effective disease management to mitigate further vision deterioration. The advent of optical coherence tomography (OCT) has marked a transformative era in ophthalmology, offering detailed visualization of the macula and optic nerve head (ONH) regions. In recent years, both 2D and 3D convolutional neural network (CNN) algorithms have been applied to OCT image analysis. While 2D CNNs rely on post-prediction aggregation of all B-scans within OCT volumes, 3D CNNs allow for direct glaucoma prediction from the OCT data. However, in the absence of extensively pre-trained 3D models, the comparative efficacy of 2D and 3D-CNN algorithms in detecting glaucoma from volumetric OCT images remains unclear. Therefore, this study explores the efficacy of glaucoma detection through volumetric OCT images using select state-of-the-art (SOTA) 2D-CNN models, 3D adaptations of these 2D-CNN models with specific weight transfer techniques, and a custom 5-layer 3D-CNN-Encoder algorithm. The performance across two distinct datasets is evaluated, each focusing on the macula and the ONH, to provide a comprehensive understanding of the models' capabilities in identifying glaucoma. Our findings demonstrate that the 2D-CNN algorithm consistently provided robust results compared to their 3D counterparts tested in this study for glaucoma detection, achieving AUC values of 0.960 and 0.943 for the macular and ONH OCT test images, respectively. Given the scarcity of pre-trained 3D models trained on extensive datasets, this comparative analysis underscores the overall utility of 2D and 3D-CNN algorithms in advancing glaucoma diagnostic systems in ophthalmology and highlights the potential of 2D algorithms for volumetric OCT image-based glaucoma detection.
引用
收藏
页数:9
相关论文
共 37 条
  • [1] Current concepts in the pathophysiology of glaucoma
    Agarwal, Renu
    Gupta, Suresh K.
    Agarwal, Puneet
    Saxena, Rohit
    Agrawal, Shyam S.
    [J]. INDIAN JOURNAL OF OPHTHALMOLOGY, 2009, 57 (04) : 257 - 266
  • [2] Glaucoma diagnosis using multi-feature analysis and a deep learning technique
    Akter, Nahida
    Fletcher, John
    Perry, Stuart
    Simunovic, Matthew P.
    Briggs, Nancy
    Roy, Maitreyee
    [J]. SCIENTIFIC REPORTS, 2022, 12 (01)
  • [3] Machine learning applied to retinal image processing for glaucoma detection: review and perspective
    Barros, Daniele M. S.
    Moura, Julio C. C.
    Freire, Cefas R.
    Taleb, Alexandre C.
    Valentim, Ricardo A. M.
    Morais, Philippi S. G.
    [J]. BIOMEDICAL ENGINEERING ONLINE, 2020, 19 (01)
  • [4] Discovery and clinical translation of novel glaucoma biomarkers
    Beykin, Gala
    Norcia, Anthony M.
    Srinivasan, Vivek J.
    Dubra, Alfredo
    Goldberg, Jeffrey L.
    [J]. PROGRESS IN RETINAL AND EYE RESEARCH, 2021, 80
  • [5] Butt Nadeem Hafeez, 2016, Taiwan J Ophthalmol, V6, P119, DOI 10.1016/j.tjo.2016.01.004
  • [6] Myopia and glaucoma: diagnostic and therapeutic challenges
    Chang, Robert T.
    Singh, Kuldev
    [J]. CURRENT OPINION IN OPHTHALMOLOGY, 2013, 24 (02) : 96 - 101
  • [7] XGBoost: A Scalable Tree Boosting System
    Chen, Tianqi
    Guestrin, Carlos
    [J]. KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2016, : 785 - 794
  • [8] Retinal Nerve Fiber Layer Features Identified by Unsupervised Machine Learning on Optical Coherence Tomography Scans Predict Glaucoma Progression
    Christopher, Mark
    Belghith, Akram
    Weinreb, Robert N.
    Bowd, Christopher
    Goldbaum, Michael H.
    Saunders, Luke J.
    Medeiros, Felipe A.
    Zangwill, Linda M.
    [J]. INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2018, 59 (07) : 2748 - 2756
  • [9] The Global Extent of Undetected Glaucoma in Adults A Systematic Review and Meta-analysis
    Da Soh, Zhi
    Yu, Marco
    Betzler, Bjorn Kaijun
    Majithia, Shivani
    Thakur, Sahil
    Yih Chung Tham
    Wong, Tien Yin
    Aung, Tin
    Friedman, David S.
    Cheng, Ching-Yu
    [J]. OPHTHALMOLOGY, 2021, 128 (10) : 1393 - 1404
  • [10] Dervisevic Edita, 2016, Med Arch, V70, P203, DOI 10.5455/medarh.2016.70.203-207