Hearts of twin cotorsion pairs revisited: Integral and Abelian hearts

被引:0
作者
Liu, Yu [1 ]
Zhou, Panyue [2 ]
机构
[1] Shaanxi Normal Univ, Sch Math & Stat, Xian 710062, Shannxi, Peoples R China
[2] Changsha Univ Sci & Technol, Sch Math & Stat, Changsha 410114, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Twin cotorsion pair; Heart; Integral; Abelian; TRIANGULATED CATEGORIES;
D O I
10.1016/j.jalgebra.2024.02.008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Hearts of twin cotorsion pairs are shown to be quasi-abelian in [14]. But they are not always integral. In this article, we provide a sufficient and necessary condition for the hearts of twin cotorsion pairs being integral (resp. abelian). (c) 2024 Elsevier Inc. All rights reserved.
引用
收藏
页码:268 / 293
页数:26
相关论文
共 22 条
  • [1] [Anonymous], 1979, S MATH 23
  • [2] [Anonymous], 1981, Asterisque
  • [3] Rigid objects, triangulated subfactors and abelian localizations
    Beligiannis, Apostolos
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2013, 274 (3-4) : 841 - 883
  • [4] Tilting theory and cluster combinatorics
    Buan, Aslak Bakke
    Marsh, Bethany Rose
    Reineke, Markus
    Reiten, Idun
    Todorov, Gordana
    [J]. ADVANCES IN MATHEMATICS, 2006, 204 (02) : 572 - 618
  • [5] From triangulated categories to module categories via localization II: calculus of fractions
    Buan, Aslak Bakke
    Marsh, Bethany R.
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2012, 86 : 152 - 170
  • [6] Gabriel P., 1967, Ergebnisse der Mathematik und ihrer Grenzgebiete, V35
  • [7] Integral and quasi-abelian hearts of twin cotorsion pairs on extriangulated categories
    Hassoun, Souheila
    Shah, Amit
    [J]. COMMUNICATIONS IN ALGEBRA, 2020, 48 (12) : 5142 - 5162
  • [8] Abelian Hearts of Twin Cotorsion Pairs on Extriangulated Categories
    Huang, Qiong
    Zhou, Panyue
    [J]. ALGEBRA COLLOQUIUM, 2023, 30 (03) : 449 - 466
  • [9] Mutation in triangulated categories and rigid Cohen-Macaulay modules
    Iyama, Osamu
    Yoshino, Yuji
    [J]. INVENTIONES MATHEMATICAE, 2008, 172 (01) : 117 - 168
  • [10] Cluster-tilted algebras are Gorenstein and stably Calabi-Yau
    Keller, Bernhard
    Reiten, Idun
    [J]. ADVANCES IN MATHEMATICS, 2007, 211 (01) : 123 - 151