共 30 条
[1]
Huo Z., Martinez-Garcia M., Zhang Y., Yan R., Shu L., Entropy measures in machine fault diagnosis: Insights and applications, IEEE Transactions on Instrumentation and Measurement, 69, 6, pp. 2607-2620, (2020)
[2]
Elhaija W. A., Al-Haija Q. A., A novel dataset and lightweight detection system for broken bars induction motors using optimizable neural networks, Intelligent Systems with Applications, (2022)
[3]
Zhang S., Zhang S., Wang B., Habetler T. G., Deep learning algorithms for bearing fault diagnostics–A comprehensive review, IEEE Access, 8, pp. 29857-29881, (2020)
[4]
Glowacz A., Fault diagnosis of electric impact drills using thermal imaging, Measurement, 171, 1–4, (2021)
[5]
Lu S., Gao Z., Xu Q., Jiang C., Zhang A., Et al., Class-imbalance privacy-preserving federated learning for decentralized fault diagnosis with biometric authentication, IEEE Transactions on Industrial Informatics, 18, 12, pp. 9101-9111, (2022)
[6]
Xu Q., Lu S., Jia W., Jiang C., Imbalanced fault diagnosis of rotating machinery via multi-domain feature extraction and cost-sensitive learning, Journal of Intelligent Manufacturing, 31, 6, pp. 1467-1481, (2020)
[7]
Choudhary A., Goyal D., Letha S. S., Infrared thermography-based fault diagnosis of induction motor bearings using machine learning, IEEE Sensors Journal, 21, 2, pp. 1727-1734, (2020)
[8]
Glowacz A., Tadeusiewicz R., Legutko S., Caesarendra W., Irfan M., Et al., Fault diagnosis of angle grinders and electric impact drills using acoustic signals, Applied Acoustics, 179, 5, (2021)
[9]
Chen J., Hu W., Cao D., Zhang M., Huang Q., Et al., Novel data-driven approach based on capsule network for intelligent multi-fault detection in electric motors, IEEE Transactions on Energy Conversion, 36, 3, pp. 2173-2184, (2020)
[10]
Li Y. B., Du X. Q., Wan F. Y., Wang X. Z., Yu H. C., Rotating machinery fault diagnosis based on convolutional neural network and infrared thermal imaging, Chinese Journal of Aeronautics, 33, 2, pp. 427-438, (2020)