On integral class field theory for varieties over p-adic fields

被引:0
作者
Geisser, Thomas H. [1 ]
Morin, Baptiste [2 ]
机构
[1] Rikkyo Univ, Dept Math, Nishi Ikebukuro, Tokyo 1718501, Japan
[2] Univ Bordeaux, Dept Math, Bordeaux, France
关键词
Geometric class field theory; Local fields; WEIL-ETALE COHOMOLOGY; CURVES; VALUES; CYCLES;
D O I
10.1016/j.jnt.2024.01.006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let K be a finite extension of the p-adic numbers Qp with ring of integers OK and residue field kappa. Let X a regular scheme, proper, flat, and geometrically irreducible over OK of dimension d, and XK its generic fiber. We show, under some assumptions on X, that there is a reciprocity isomorphism of locally compact groups Har2d-1(XK,Z(d)) <^> 7rab 1 (XK)W from the cohomology theory defined in [10] to an integral model 7rab 1 (XK)W of the abelianized fundamental group 7rab 1 (XK). After removing the contribution from the base field, the map becomes an isomorphism of finitely generated abelian groups. The key ingredient is the duality result in [10]. (c) 2024 Elsevier Inc. All rights reserved.
引用
收藏
页码:41 / 70
页数:30
相关论文
共 26 条
[1]  
Deligne P., 1977, Lecture Notes in Math., V569, P233
[2]  
Flach M, 2012, DOC MATH, V17, P313
[3]  
Flach M, 2018, DOC MATH, V23, P1425
[4]   The kernel of the reciprocity map of varieties over local fields [J].
Forre, Patrick .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2015, 698 :55-69
[5]   Weil-etale cohomology over finite fields [J].
Geisser, T .
MATHEMATISCHE ANNALEN, 2004, 330 (04) :665-692
[6]  
Geisser T.H., 2018, K THEORY P INT C, P195
[7]   Arithmetic cohomology over finite fields and special values of ζ-functions [J].
Geisser, Thomas .
DUKE MATHEMATICAL JOURNAL, 2006, 133 (01) :27-57
[8]   Tame class field theory for singular varieties over finite fields [J].
Geisser, Thomas ;
Schmidt, Alexander .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2017, 19 (11) :3467-3488
[9]  
Geisser T, 2010, ANN MATH, V172, P1095
[10]   Arithmetic homology and an integral version of Kato's conjecture [J].
Geisser, Thomas .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2010, 644 :1-22