Ordered Interface Engineering Enabled High-Performance Ti3C2TxMXene Fiber-Based Supercapacitors

被引:22
作者
Zhang Y. [1 ]
Zhu X. [1 ]
Sun S. [1 ]
Guo Q. [2 ]
Xu M. [1 ]
Wu G. [1 ,3 ]
机构
[1] State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing
[2] School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng
[3] National Engineering Lab for Textile Fiber Materials & Processing Technology, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou
基金
中国国家自然科学基金;
关键词
69;
D O I
10.1021/acs.energyfuels.2c01882
中图分类号
学科分类号
摘要
The advanced design of heterostructured fibers with ordered transport channels and porous frameworks for high-speed ions/electrons kinetics is principally fundamental for high-performance fiber-based supercapacitors (FSCs). However, typically low energy-storage performances restrict their substantive applications due to a fibrous restacking phenomenon and poor interfacial charge transfer. Here, we develop an ordered core-shell fiber, wherein the porous zeolitic imidazolate framework-67 (ZIF-67) polyhedron shell is uniformly loaded on a highly conductive Ti3C2Tx core via a versatile microfluidic method. Due to the improved porous generation, ordered porous pathways, large exposed surface, and in situ interfacial electron transfer, the ZIF-67@Ti3C2Tx fiber displays excellent volumetric capacitance (972 F cm-3) and long-term cycling stability (90.8% capacitive retention after 20 »000 cycles) in 1 M KOH electrolytes. Meanwhile, the flexible solid-state ZIF-67@Ti3C2Tx FSCs maintain a good capacitance, large bending/wearable stabilities, and steady temperature-dependent capability. Based on those significant electrochemical performances, the supercapacitors can impressively power various electrical devices [e.g., light-emitting diodes (LEDs), displays, electric fans, pinwheels, and rolling bells], which will guide the practical progress of miniaturized energy technologies and smart electronics. © 2022 American Chemical Society.
引用
收藏
页码:7898 / 7907
页数:9
相关论文
共 69 条
[1]  
Fang B., Chang D., Xu Z., Gao C., A Review on Graphene Fibers: Expectations, Advances, and Prospects, Adv. Mater., 32, 5, (2020)
[2]  
Lu X., Yu M., Wang G., Tong Y., Li Y., Flexible solid-state supercapacitors: design, fabrication and applications, Energy Environ. Sci., 7, 7, pp. 2160-2181, (2014)
[3]  
Li Q., Cheng H., Wu X., Wang C.-F., Wu G., Chen S., Enriched carbon dots/graphene microfibers towards high-performance micro-supercapacitors, J. Mater. Chem. A, 6, 29, pp. 14112-14119, (2018)
[4]  
Pan Z., Yang J., Zhang Q., Liu M., Hu Y., Kou Z., Liu N., Yang X., Ding X., Chen H., Et al., All-Solid-State Fiber Supercapacitors with Ultrahigh Volumetric Energy Density and Outstanding Flexibility, Adv. Energy Mater., 9, 9, (2019)
[5]  
Pan Z., Zhong J., Zhang Q., Yang J., Qiu Y., Ding X., Nie K., Yuan H., Feng K., Wang X., Et al., Ultrafast All-Solid-State Coaxial Asymmetric Fiber Supercapacitors with a High Volumetric Energy Density, Adv. Energy Mater., 8, 14, (2018)
[6]  
Chen C., Zhao M., Cai Y., Zhao G., Xie Y., Zhang L., Zhu G., Pan L., Scalable synthesis of strutted nitrogen doped hierarchical porous carbon nanosheets for supercapacitors with both high gravimetric and volumetric performances, Carbon, 179, pp. 458-468, (2021)
[7]  
Dubal D.P., Chodankar N.R., Kim D.H., Gomez-Romero P., Towards flexible solid-state supercapacitors for smart and wearable electronics, Chem. Soc. Rev., 47, 6, pp. 2065-2129, (2018)
[8]  
Wu T., Wu X., Li L., Hao M., Wu G., Zhang T., Chen S., Anisotropic Boron-Carbon Hetero-Nanosheets for Ultrahigh Energy Density Supercapacitors, Angew. Chem. Int. Ed, 59, 52, pp. 23800-23809, (2020)
[9]  
Wu X., Hong R., Meng J., Cheng R., Zhu Z., Wu G., Li Q., Wang C.F., Chen S., Hydrophobic Poly(tert-butyl acrylate) Photonic Crystals towards Robust Energy-Saving Performance, Angew. Chem. Int. Ed, 58, 38, pp. 13556-13564, (2019)
[10]  
Wu X., Xu Y., Hu Y., Wu G., Cheng H., Yu Q., Zhang K., Chen W., Chen S., Microfluidic-spinning construction of black-phosphorus-hybrid microfibres for non-woven fabrics toward a high energy density flexible supercapacitor, Nat. Commun., 9, (2018)