Artificial Intelligence in Skin Cancer Diagnosis: A Reality Check

被引:32
作者
Brancaccio, Gabriella [1 ]
Balato, Anna [1 ]
Malvehy, Josep [2 ,3 ]
Puig, Susana [2 ,3 ]
Argenziano, Giuseppe [1 ]
Kittler, Harald [4 ]
机构
[1] Univ Campania Luigi Vanvitelli, Dermatol Unit, Via Sergio Pansini 5, I-80131 Naples, Italy
[2] Univ Barcelona, Hosp Clin Barcelona, Inst Invest Biomed August Pi i Sunye, Melanoma Unit,Dermatol Dept, Barcelona, Spain
[3] Inst Salud Carlos III, Ctr Invest Biomed Red Enfermedades Raras CIBERER, Barcelona, Spain
[4] Med Univ Vienna, Dept Dermatol, Vienna, Austria
关键词
Convoluted neural network; Melanoma; Dermoscopy; Mobile apps; Primary care; CONVOLUTIONAL NEURAL-NETWORK; CLINICAL-DIAGNOSIS; RISK-ASSESSMENT; DERMATOLOGISTS; MELANOMA; CLASSIFICATION; ACCURACY; LESIONS; PERFORMANCE; VALIDATION;
D O I
10.1016/j.jid.2023.10.004
中图分类号
R75 [皮肤病学与性病学];
学科分类号
100206 ;
摘要
The field of skin cancer detection offers a compelling use case for the application of artificial intelligence (AI) within the realm of image-based diagnostic medicine. Through the analysis of large datasets, AI algorithms have the capacity to classify clinical or dermoscopic images with remarkable accuracy. Although these AIbased applications can operate both autonomously and under human supervision, the best results are achieved through a collaborative approach that leverages the expertise of both AI and human experts. However, it is important to note that most studies focus on assessing the diagnostic accuracy of AI in artificial settings rather than in real-world scenarios. Consequently, the practical utility of AI-assisted diagnosis in a clinical environment is still largely unknown. Furthermore, there exists a knowledge gap concerning the optimal use cases and deployment settings for these AI systems as well as the practical challenges that may arise from widespread implementation. This review explores the advantages and limitations of AI in a variety of real-world contexts, with a specific focus on its value to consumers, general practitioners, and dermatologists.
引用
收藏
页码:492 / 499
页数:8
相关论文
共 55 条
[1]   Computational neural network in melanocytic lesions diagnosis: artificial intelligence to improve diagnosis in dermatology? [J].
Aractingi, Selim ;
Pellacani, Giovanni .
EUROPEAN JOURNAL OF DERMATOLOGY, 2019, 29 (Suppl 1) :4-7
[2]   A reinforcement learning model for AI-based decision support in skin cancer [J].
Barata, Catarina ;
Rotemberg, Veronica ;
Codella, Noel C. F. ;
Tschandl, Philipp ;
Rinner, Christoph ;
Akay, Bengu Nisa ;
Apalla, Zoe ;
Argenziano, Giuseppe ;
Halpern, Allan ;
Lallas, Aimilios ;
Longo, Caterina ;
Malvehy, Josep ;
Puig, Susana ;
Rosendahl, Cliff ;
Soyer, H. Peter ;
Zalaudek, Iris ;
Kittler, Harald .
NATURE MEDICINE, 2023, 29 (08) :1941-+
[3]   Reproducible Naevus Counts Using 3D Total Body Photography and Convolutional Neural Networks [J].
Betz-Stablein, Brigid ;
D'Alessandro, Brian ;
Koh, Uyen ;
Plasmeijer, Elsemieke ;
Janda, Monika ;
Menzies, Scott W. ;
Hofmann-Wellenhof, Rainer ;
Green, Adele C. ;
Soyer, H. Peter .
DERMATOLOGY, 2022, 238 (01) :4-11
[4]   Can we open the black box of AI? [J].
Castelvecchi D. .
Nature, 2016, 538 (7623) :20-23
[5]   Diagnostic performance of augmented intelligence with 2D and 3D total body photography and convolutional neural networks in a high-risk population for melanoma under real-world conditions: A new era of skin cancer screening? [J].
Cerminara, Sara E. ;
Cheng, Phil ;
Kostner, Lisa ;
Huber, Stephanie ;
Kunz, Michael ;
Maul, Julia-Tatjana ;
Bohm, Jette S. ;
Dettwiler, Chiara F. ;
Geser, Anna ;
Jakopovic, Cecile ;
Stoffel, Livia M. ;
Peter, Jelissa K. ;
Levesque, Mitchell ;
Navarini, Alexander A. ;
Maul, Lara Valeska .
EUROPEAN JOURNAL OF CANCER, 2023, 190
[6]  
Chadwick X, 2014, 47 HAWAII INT C SYST
[7]   Dermal epidermal junction detection for full-field optical coherence tomography data of human skin by deep learning [J].
Chou, Hua-Yu ;
Huang, Sheng-Lung ;
Tjiu, Jeng-Wei ;
Chen, Homer H. .
COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2021, 87
[8]   Smartphone applications for triaging adults with skin lesions that are suspicious for melanoma [J].
Chuchu, Naomi ;
Takwoingi, Yemisi ;
Dinnes, Jacqueline ;
Matin, Rubeta N. ;
Bassett, Oliver ;
FMoreau, Jacqueline ;
Bayliss, Susan E. ;
Davenport, Clare ;
Godfrey, Kathie ;
O'Connell, Susan ;
Jain, Abhilash ;
Walter, Fiona M. ;
Deeks, Jonathan J. ;
Williams, Hywel C. ;
Abbott, Rachel ;
Aldridge, Ben ;
Bassett, Oliver ;
Chan, Sue Ann ;
Durack, Alana ;
Fawzy, Monica ;
Gulati, Abha ;
Moreau, Jacqui ;
Patel, Lopa ;
Saleh, Daniel ;
Thompson, David ;
Wong, Kai Yuen ;
di Ruffano, Lavinia Ferrante ;
Johnston, Louise ;
Jain, Abhilash ;
Walter, Fiona ;
Bowling, Jonathan ;
Cheung, Seau Tak ;
Fleming, Colin ;
Gardiner, Matthew ;
Jain, Abhilash ;
O'Connell, Susan ;
Lawton, Pat ;
Lear, John ;
Leeflang, Mariska ;
Motley, Richard ;
Nathan, Paul ;
Newton-Bishop, Julia ;
Payne, Miranda ;
Robinson, Rachael ;
Rodwell, Simon ;
Schofield, Julia ;
Shroff, Neil ;
Tehrani, Hamid ;
Traill, Zoe ;
Walter, Fiona .
COCHRANE DATABASE OF SYSTEMATIC REVIEWS, 2018, (12)
[9]  
Chung Y, 2018, Ned Tijdschr Dermatol Venereol, V28, P10
[10]   Validation of artificial intelligence prediction models for skin cancer diagnosis using dermoscopy images: the 2019 International Skin Imaging Collaboration Grand Challenge [J].
Combalia, Marc ;
Codella, Noel ;
Rotemberg, Veronica ;
Carrera, Cristina ;
Dusza, Stephen ;
Gutman, David ;
Helba, Brian ;
Kittler, Harald ;
Kurtansky, Nicholas R. ;
Liopyris, Konstantinos ;
Marchetti, Michael A. ;
Podlipnik, Sebastian ;
Puig, Susana ;
Rinner, Christoph ;
Tschandl, Philipp ;
Weber, Jochen ;
Halpern, Allan ;
Malvehy, Josep .
LANCET DIGITAL HEALTH, 2022, 4 (05) :E330-E339