Experimental and statistical evaluation of rheological properties of self-compacting concrete containing fly ash and ground granulated blast furnace slag

被引:26
作者
Mohammed A.M. [1 ]
Asaad D.S. [2 ]
Al-Hadithi A.I. [3 ]
机构
[1] Dams and Water Resources Engineering Department, College of Engineering, University Of Anbar, Anbar
[2] Department of Civil Engineering, College of Engineering, University of Kurdistan Hewlêr, Erbil
[3] Civil Engineering Department, College of Engineering, University Of Anbar, Anbar
关键词
Fly ash; Ground granulated blast furnace slag; Lignosulphonates; Rheological properties; Self-compacting concrete;
D O I
10.1016/j.jksues.2020.12.005
中图分类号
学科分类号
摘要
This study examines an attempt to produce self-compacting concrete (SCC) containing fly ash (FA), ground granulated blast furnace slag (S) and both (FA + S). The effects of these materials on the rheological properties of the SCC mixes were studied experimentally. The study began with three groups of SCCs, each with 25% water binder (w/b) and 550 kg/m3 total binder content. Instead of superplasticizers (SP), the chemical admixtures were lignosulphonates (LS), which replaced Portland cement (PC) at levels by weight of 10%, 20%, 30% 40%, 50%, and 60%. The fresh properties of the mixtures were examined experimentally for slump flow diameter, T50 time, V-funnel time, and L-box height ratio. In the mixtures with FA alone, a continuous decrease was observed in compressive strength. Increases in strength ended at 40% in the case of FA alone, and 30% for both the S and FA + S mixes. Statistical analysis was carried out to assess the effect of experimentally substituted materials FA and S, with results showing that S had a greater influence than FA on T50 time, V-funnel, L-box height ratio, and compressive strength, while FA had more effect than S on the slump flow diameter test. © 2020 The Authors
引用
收藏
页码:388 / 397
页数:9
相关论文
共 50 条
  • [21] Performance of self-compacting concrete containing fly ash
    Khatib, J. M.
    CONSTRUCTION AND BUILDING MATERIALS, 2008, 22 (09) : 1963 - 1971
  • [22] THE RHEOLOGICAL PROPERTIES OF SELF-COMPACTING CONCRETE WITH HIGH-CALCIUM FLY ASH
    Ponikiewski, Tomasz
    Golaszewski, Jacek
    BRITTLE MATRIX COMPOSITES 11, 2015, : 393 - 403
  • [23] Performance evaluation of fly ash and ground granulated blast furnace slag-based geopolymer concrete: A comparative study
    Yilmazoglu, Arif
    Yildirim, Salih Taner
    Behcet, Omer Faruk
    Yildiz, Sadik
    STRUCTURAL CONCRETE, 2022, 23 (06) : 3898 - 3915
  • [24] Effects of granulated blast furnace slag and superplasticizer type on the fresh properties and compressive strength of self-compacting concrete
    Boukendakdji, Othmane
    Kadri, El-Hadj
    Kenai, Said
    CEMENT & CONCRETE COMPOSITES, 2012, 34 (04) : 583 - 590
  • [25] Properties and Mechanical Strength Analysis of Concrete Using Fly Ash, Ground Granulated Blast Furnace Slag and Various Superplasticizers
    Juang, Chuen-Ul
    Kuo, Wen-Ten
    BUILDINGS, 2023, 13 (07)
  • [26] Rheological and Durability Properties of Self-Compacting Concrete Produced Using Marble Dust and Blast Furnace Slag
    Karakurt, Cenk
    Dumangoez, Mahmut
    MATERIALS, 2022, 15 (05)
  • [27] A study on the workability of self-compacting mortar with blast furnace slag as sand replacement supplemented by fly ash
    Wang, Yuxin
    Liu, Zihao
    Takasu, Koji
    Suyama, Hiroki
    CONSTRUCTION AND BUILDING MATERIALS, 2025, 465
  • [28] Effect of Various Fly Ash and Ground Granulated Blast Furnace Slag Content on Concrete Properties: Experiments and Modelling
    Qu, Zhiwei
    Liu, Zihao
    Si, Ruizhe
    Zhang, Yingda
    MATERIALS, 2022, 15 (09)
  • [29] THE ENGINEERING PERFORMANCE OF ECO-FRIENDLY CONCRETES CONTAINING DIATOMITE FLY ASH AND GROUND GRANULATED BLAST FURNACE SLAG
    ARUNTAS, H. U. E. S. E. Y. I. N. Y. I. L. M. A. Z.
    YILDIZ, E. R. K. A. N.
    KAPLAN, G. O. K. H. A. N.
    ACTA POLYTECHNICA, 2022, 62 (05) : 505 - 521
  • [30] Enhancement of the properties of fly ash based geopolymer paste by incorporating ground granulated blast furnace slag
    Saha, Suman
    Rajasekaran, C.
    CONSTRUCTION AND BUILDING MATERIALS, 2017, 146 : 615 - 620