Exploration of a noninvasive radiomics classifier for breast cancer tumor microenvironment categorization and prognostic outcome prediction

被引:3
作者
Han, Xiaorui [1 ]
Gong, Zhengze [2 ]
Guo, Yuan [1 ]
Tang, Wenjie [1 ]
Wei, Xinhua [1 ]
机构
[1] South China Univ Technol, Guangzhou Peoples Hosp 1, Sch Med, Dept Radiol, Guangzhou 510180, Guangdong, Peoples R China
[2] South China Univ Technol, Guangzhou Peoples Hosp 1, Sch Med, Informat & Data Ctr, Guangzhou, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Breast Neoplasms; Radiomics; Machine Learning; Tumor Microenvironment; Magnetic Resonance Imaging;
D O I
10.1016/j.ejrad.2024.111441
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Rationale and Objectives: Breast cancer progression and treatment response are significantly influenced by the tumor microenvironment (TME). Traditional methods for assessing TME are invasive, posing a challenge for patient care. This study introduces a non-invasive approach to TME classification by integrating radiomics and machine learning, aiming to predict the TME status using imaging data, thereby aiding in prognostic outcome prediction. Materials and Methods: Utilizing multi-omics data from The Cancer Genome Atlas (TCGA) and The Cancer Imaging Archive (TCIA), this study employed CIBERSORT and MCP-counter algorithms analyze immune infiltration in breast cancer. A radiomics classifier was developed using a random forest algorithm, leveraging quantitative features extracted from intratumoral and peritumoral regions of Dynamic Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI) scans. The classifer's ability to predict diverse TME states were and their prognostic implications were evaluated using Kaplan-Meier survival curves. Results: Three distinct TME states were identified using RNA-Seq data, each displaying unique prognostic and biological characteristics. Notably, patients with increased immune cell infiltration showed significantly improved prognoses (P < 0.05). The classifier, comprising 24 radiomic features, demonstrated high predictive accuracy (AUC of training set = 0.960, 95 % CI: 0.922, 0.997; AUC of testing set = 0.853, 95 % CI: 0.687, 1.000) in differentiating these TME states. Predictions from the classifier also correlated significantly with overall patient survival (P < 0.05). Conclusion: This study offers a detailed analysis of the complex TME states in breast cancer and presents a reliable, noninvasive radiomics classifier for TME assessment. The classifer's accurate prediction of TME status and its correlation with prognosis highlight its potential as a tool in personalized breast cancer treatment, paving the way for more individualized and less invasive therapeutic strategies.
引用
收藏
页数:8
相关论文
共 34 条
[1]   Artificial Intelligence to Predict Lymph Node Metastasis at CT in Pancreatic Ductal Adenocarcinoma [J].
Bian, Yun ;
Zheng, Zhilin ;
Fang, Xu ;
Jiang, Hui ;
Zhu, Mengmeng ;
Yu, Jieyu ;
Zhao, Haiyan ;
Zhang, Ling ;
Yao, Jiawen ;
Lu, Le ;
Lu, Jianping ;
Shao, Chengwei .
RADIOLOGY, 2023, 306 (01) :160-169
[2]  
Chen BB, 2018, METHODS MOL BIOL, V1711, P243, DOI 10.1007/978-1-4939-7493-1_12
[3]   Tumour-infiltrating lymphocytes and prognosis in different subtypes of breast cancer: a pooled analysis of 3771 patients treated with neoadjuvant therapy [J].
Denkert, Carsten ;
von Minckwitz, Gunter ;
Darb-Esfahani, Silvia ;
Lederer, Bianca ;
Heppner, Barbara I. ;
Weber, Karsten E. ;
Budczies, Jan ;
Huober, Jens ;
Klauschen, Frederick ;
Furlanetto, Jenny ;
Schmitt, Wolfgang D. ;
Blohmer, Jens-Uwe ;
Karn, Thomas ;
Pfitzner, Berit M. ;
Kuemmel, Sherko ;
Engels, Knut ;
Schneeweiss, Andreas ;
Hartmann, Arndt ;
Noske, Aurelia ;
Fasching, Peter A. ;
Jackisch, Christian ;
van Mackelenbergh, Marion ;
Sinn, Peter ;
Schem, Christian ;
Hanusch, Claus ;
Untch, Michael ;
Loibl, Sibylle .
LANCET ONCOLOGY, 2018, 19 (01) :40-50
[4]   Radiomics: Images Are More than Pictures, They Are Data [J].
Gillies, Robert J. ;
Kinahan, Paul E. ;
Hricak, Hedvig .
RADIOLOGY, 2016, 278 (02) :563-577
[5]   Roles of the immune system in cancer: from tumor initiation to metastatic progression [J].
Gonzalez, Hugo ;
Hagerling, Catharina ;
Werb, Zena .
GENES & DEVELOPMENT, 2018, 32 (19-20) :1267-1284
[6]   Radiomics Assessment of the Tumor Immune Microenvironment to Predict Outcomes in Breast Cancer [J].
Han, Xiaorui ;
Cao, Wuteng ;
Wu, Lei ;
Liang, Changhong .
FRONTIERS IN IMMUNOLOGY, 2022, 12
[7]   Phantom-based radiomics feature test-retest stability analysis on photon-counting detector CT [J].
Hertel, Alexander ;
Tharmaseelan, Hishan ;
Rotkopf, Lukas T. ;
Noerenberg, Dominik ;
Riffel, Philipp ;
Nikolaou, Konstantin ;
Weiss, Jakob ;
Bamberg, Fabian ;
Schoenberg, Stefan O. ;
Froelich, Matthias F. ;
Ayx, Isabelle .
EUROPEAN RADIOLOGY, 2023, 33 (07) :4905-4914
[8]   Alterations of DNA damage response pathway: Biomarker and therapeutic strategy for cancer immunotherapy [J].
Jiang, Minlin ;
Jia, Keyi ;
Wang, Lei ;
Li, Wei ;
Chen, Bin ;
Liu, Yu ;
Wang, Hao ;
Zhao, Sha ;
He, Yayi ;
Zhou, Caicun .
ACTA PHARMACEUTICA SINICA B, 2021, 11 (10) :2983-2994
[9]   Noninvasive imaging evaluation of tumor immune microenvironment to predict outcomes in gastric cancer [J].
Jiang, Y. ;
Wang, H. ;
Wu, J. ;
Chen, C. ;
Yuan, Q. ;
Huang, W. ;
Li, T. ;
Xi, S. ;
Hu, Y. ;
Zhou, Z. ;
Xu, Y. ;
Li, G. ;
Li, R. .
ANNALS OF ONCOLOGY, 2020, 31 (06) :760-768
[10]   Biology-guided deep learning predicts prognosis and cancer immunotherapy response [J].
Jiang, Yuming ;
Zhang, Zhicheng ;
Wang, Wei ;
Huang, Weicai ;
Chen, Chuanli ;
Xi, Sujuan ;
Ahmad, M. Usman ;
Ren, Yulan ;
Sang, Shengtian ;
Xie, Jingjing ;
Wang, Jen-Yeu ;
Xiong, Wenjun ;
Li, Tuanjie ;
Han, Zhen ;
Yuan, Qingyu ;
Xu, Yikai ;
Xing, Lei ;
Poultsides, George A. ;
Li, Guoxin ;
Li, Ruijiang .
NATURE COMMUNICATIONS, 2023, 14 (01)