Object Detection in Remote Sensing Images With Parallel Feature Fusion and Cascade Global Attention Head

被引:0
作者
Yang, Zhigang [1 ]
Liu, Yiming [1 ]
Wen, Guiwei [1 ]
Xia, Xiangyu [1 ]
Zhang, Wei Emma [2 ]
Chen, Tao [1 ]
机构
[1] Harbin Engn Univ, Coll Informat & Commun Engn, Key Lab Adv Marine Commun & Informat Technol, Minist Ind & Informat Technol, Harbin 150001, Peoples R China
[2] Univ Adelaide, Sch Comp Sci, Adelaide, SA 5005, Australia
基金
中国国家自然科学基金;
关键词
Cascade global attention (GA); object detection; parallel feature fusion; remote sensing (RS) images;
D O I
10.1109/LGRS.2024.3385231
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Convolutional neural networks (CNNs) have driven significant development in remote sensing (RS) object detection. To achieve concise and effective optimization, we propose a two-stage detector with a parallel feature fusion strategy and a cascade global attention (GA) mechanism for object detection in RS images, named PC-RCNN. We first design a feature pyramid network with two parallel branches (PB-FPN), corresponding to the top-down and bottom-up feature fusion pathways, respectively. Different optimization modules can be adopted in different pathways to avoid potential module incompatibility when connected in series. Such parallel feature fusion strategy can achieve both higher detection accuracy and higher computational efficiency compared with previous series fusion modes. Furthermore, we design a GA block to enhance feature representations of regions and propose a cascade GA head network (CGA-Head) for accurate category prediction and location estimation. Experiments on a challenging large-scale dataset, namely DOTA, show that the proposed PC-RCNN achieves a mean average precision (mAP) of 77.63%, which is comparable to other state-of-the-art CNN-based models. Parallel feature fusion, cascade GA, object detection, RS images.
引用
收藏
页码:1 / 5
页数:5
相关论文
共 22 条
[1]   Dynamic Head: Unifying Object Detection Heads with Attentions [J].
Dai, Xiyang ;
Chen, Yinpeng ;
Xiao, Bin ;
Chen, Dongdong ;
Liu, Mengchen ;
Yuan, Lu ;
Zhang, Lei .
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, :7369-7378
[2]   Learning RoI Transformer for Oriented Object Detection in Aerial Images [J].
Ding, Jian ;
Xue, Nan ;
Long, Yang ;
Xia, Gui-Song ;
Lu, Qikai .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :2844-2853
[3]   NAS-FPN: Learning Scalable Feature Pyramid Architecture for Object Detection [J].
Ghiasi, Golnaz ;
Lin, Tsung-Yi ;
Le, Quoc V. .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :7029-7038
[4]   Align Deep Features for Oriented Object Detection [J].
Han, Jiaming ;
Ding, Jian ;
Li, Jie ;
Xia, Gui-Song .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
[5]   ReDet: A Rotation-equivariant Detector for Aerial Object Detection [J].
Han, Jiaming ;
Ding, Jian ;
Xue, Nan ;
Xia, Gui-Song .
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, :2785-2794
[6]   Next Day Wildfire Spread: A Machine Learning Dataset to Predict Wildfire Spreading From Remote-Sensing Data [J].
Huot, Fantine ;
Hu, R. Lily ;
Goyal, Nita ;
Sankar, Tharun ;
Ihme, Matthias ;
Chen, Yi-Fan .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
[7]   Oriented RepPoints for Aerial Object Detection [J].
Li, Wentong ;
Chen, Yijie ;
Hu, Kaixuan ;
Zhu, Jianke .
2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, :1819-1828
[8]   Feature Pyramid Networks for Object Detection [J].
Lin, Tsung-Yi ;
Dollar, Piotr ;
Girshick, Ross ;
He, Kaiming ;
Hariharan, Bharath ;
Belongie, Serge .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :936-944
[9]   Path Aggregation Network for Instance Segmentation [J].
Liu, Shu ;
Qi, Lu ;
Qin, Haifang ;
Shi, Jianping ;
Jia, Jiaya .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :8759-8768
[10]   Parameter-Free Attention Network for Spectral-Spatial Hyperspectral Image Classification [J].
Paoletti, Mercedes E. ;
Tao, Xuanwen ;
Han, Lirong ;
Wu, Zhaoyue ;
Moreno-Alvarez, Sergio ;
Roy, Swalpa Kumar ;
Plaza, Antonio ;
Haut, Juan M. .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61