Ribogreen Fluorescent Assay Kinetics to Measure Ribonucleic Acid Loading into Lipid Nanoparticle Carriers

被引:5
作者
Bizmark, Navid [1 ,2 ]
Nayagam, Satya [1 ]
Kim, Bumjun [1 ]
Amelemah, David F. [1 ]
Zhang, Dawei [1 ]
Datta, Sujit S. [1 ]
Priestley, Rodney D. [1 ,2 ]
Colace, Tom [3 ]
Wang, Jane [3 ]
Prud'homme, Robert K. [1 ]
机构
[1] Princeton Univ, Dept Chem & Biol Engn, Princeton, NJ 08544 USA
[2] Princeton Univ, Princeton Mat Inst, Princeton, NJ 08544 USA
[3] Tessera Therapeut Inc, Somerville, MA 02143 USA
关键词
drug delivery; lipid nanoparticles; Ribogreen assay; ribonucleic acid; vaccine formulation; RNA; DELIVERY; POTENCY; WATER;
D O I
10.1002/admi.202301083
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
New generations of vaccines have been developed by encapsulating messenger ribonucleic acid (mRNA) in lipid nanoparticle (LNP) carriers. In addition to the physicochemical properties of LNPs, the encapsulation efficiency (EE) of mRNA in LNPs is a key factor to screen vaccine assembly assays. Fluorescent dyes with amplified signals upon binding with mRNA are at the core of developing assays to quantify EE. However, disregarding the temporal effects during the assay impacts the accuracy of the assay. Here, the kinetics of temporal decay in fluorescence intensity of dye-RNA complex-in Ribogreen assay-are reported and shown how this dynamic process can be impeded in the presence of a nonionic surfactant. Further, the impact of this dynamic process on the calculated EE is studied. The corrections needed to accurately assay dynamic mRNA loading processes are presented. Ribogreen fluorescence assay is widely used to quantify the amount of messenger ribonucleic acid (mRNA) encapsulated in lipid nanoparticles (LNPs). However, the kinetics of fluorophore binding with mRNA in the presence of lipid components and surfactants are complex. Here, the time-dependency of the Ribogreen assay on surfactant and lipid additions is discussed. image
引用
收藏
页数:8
相关论文
共 40 条
[1]   What Are the Molecular Requirements for Protein Sliding along DNA? [J].
Bigman, Lavi S. ;
Greenblatt, Harry M. ;
Levy, Yaakov .
JOURNAL OF PHYSICAL CHEMISTRY B, 2021, 125 (12) :3119-3131
[2]   Ionizable Lipid Nanoparticle-Mediated mRNA Delivery for Human CAR T Cell Engineering [J].
Billingsley, Margaret M. ;
Singh, Nathan ;
Ravikumar, Pranali ;
Zhang, Rui ;
June, Carl H. ;
Mitchell, Michael J. .
NANO LETTERS, 2020, 20 (03) :1578-1589
[3]   Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems [J].
Bustin, SA .
JOURNAL OF MOLECULAR ENDOCRINOLOGY, 2002, 29 (01) :23-39
[4]   Development of an In Vitro Release Assay for Low-Density Cannabidiol Nanoparticles Prepared by Flash NanoPrecipitation [J].
Caggiano, Nicholas J. ;
Wilson, Brian K. ;
Priestley, Rodney D. ;
Prud'homme, Robert K. .
MOLECULAR PHARMACEUTICS, 2022, 19 (05) :1515-1525
[5]  
Chen M.H., 2021, WO 2022266521
[6]   Influence of particle size on the in vivo potency of lipid nanoparticle formulations of siRNA [J].
Chen, Sam ;
Tam, Yuen Yi C. ;
Lin, Paulo J. C. ;
Sung, Molly M. H. ;
Tam, Ying K. ;
Cullis, Pieter R. .
JOURNAL OF CONTROLLED RELEASE, 2016, 235 :236-244
[7]   Addressing the Cold Reality of mRNA Vaccine Stability [J].
Crommelin, Daan J. A. ;
Anchordoquy, Thomas J. ;
Volkin, David B. ;
Jiskoot, Wim ;
Mastrobattista, Enrico .
JOURNAL OF PHARMACEUTICAL SCIENCES, 2021, 110 (03) :997-1001
[8]   Controlling drug nanoparticle formation by rapid precipitation [J].
D'Addio, Suzanne M. ;
Prud'homme, Robert K. .
ADVANCED DRUG DELIVERY REVIEWS, 2011, 63 (06) :417-426
[9]   Conformation-sensitive targeting of lipid nanoparticles for RNA therapeutics [J].
Dammes, Niels ;
Goldsmith, Meir ;
Ramishetti, Srinivas ;
Dearling, Jason L. J. ;
Veiga, Nuphar ;
Packard, Alan B. ;
Peer, Dan .
NATURE NANOTECHNOLOGY, 2021, 16 (09) :1030-+
[10]   Protein Sliding along DNA: Dynamics and Structural Characterization [J].
Givaty, Ohad ;
Levy, Yaakov .
JOURNAL OF MOLECULAR BIOLOGY, 2009, 385 (04) :1087-1097