A novel robust method for estimating the covariance matrix of financial returns with applications to risk management

被引:0
|
作者
Leccadito, Arturo [1 ,2 ]
Staino, Alessandro [1 ]
Toscano, Pietro [3 ]
机构
[1] Univ Calabria, Dept Econ Stat & Finance, I-87036 Arcavacata Di Rende, CS, Italy
[2] UCLouvain, LFIN LIDAM, Voie Roman Pays 34, B-1348 Louvain La Neuve, Belgium
[3] Fidel Investments, 245 Summer St, Boston, MA 02210 USA
关键词
Value at risk; Expected shortfall; Gerber statistic; Model confidence set; Superior set of models; C51; C52; C58; G15; DYNAMIC CONDITIONAL CORRELATION; VALUE-AT-RISK; EXPECTED SHORTFALL; TIME-SERIES; MODELS; VOLATILITY;
D O I
10.1186/s40854-024-00642-2
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
This study introduces the dynamic Gerber model (DGC) and evaluates its performance in the prediction of Value at Risk (VaR) and Expected Shortfall (ES) compared to alternative parametric, non-parametric and semi-parametric methods for estimating the covariance matrix of returns. Based on ES backtests, the DGC method produces, overall, accurate ES forecasts. Furthermore, we use the Model Confidence Set procedure to identify the superior set of models (SSM). For all the portfolios and VaR/ES confidence levels we consider, the DGC is found to belong to the SSM.
引用
收藏
页数:28
相关论文
共 50 条
  • [1] ROBUST ESTIMATION OF MEAN AND COVARIANCE MATRIX FOR INCOMPLETE DATA IN FINANCIAL APPLICATIONS
    Liu, Junyan
    Palomar, Daniel P.
    2017 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP 2017), 2017, : 908 - 912
  • [2] The informativeness of risk factor disclosures: estimating the covariance matrix of stock returns using similarity measures
    Tilmann, Lukas
    Walther, Martin
    JOURNAL OF RISK, 2023, 25 (06): : 1 - 23
  • [3] Estimating a covariance matrix for market risk management and the case of credit default swaps
    Neuberg, Richard
    Glasserman, Paul
    QUANTITATIVE FINANCE, 2019, 19 (01) : 77 - 92
  • [4] Adjusting covariance matrix for risk management
    Yu, Philip L. H.
    Ng, F. C.
    Ting, Jessica K. W.
    QUANTITATIVE FINANCE, 2020, 20 (10) : 1681 - 1699
  • [5] A robust method for estimating the fundamental matrix
    Shen, JQ
    Hu, MX
    Yuan, BZ
    2002 6TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING PROCEEDINGS, VOLS I AND II, 2002, : 892 - 895
  • [6] ESTIMATING THE COVARIANCE-MATRIX OF ROBUST REGRESSION M-ESTIMATES
    HILL, RW
    COMMUNICATIONS IN STATISTICS PART A-THEORY AND METHODS, 1979, 8 (12): : 1183 - 1196
  • [7] Robust adaptive beamforming via a novel subspace method for interference covariance matrix reconstruction
    Yuan, Xiaolei
    Gan, Lu
    SIGNAL PROCESSING, 2017, 130 : 233 - 242
  • [8] Robust Adaptive Beamforming With a Novel Interference-Plus-Noise Covariance Matrix Reconstruction Method
    Huang, Lei
    Zhang, Jing
    Xu, Xu
    Ye, Zhongfu
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2015, 63 (07) : 1643 - 1650
  • [9] ROBUST ADAPTIVE BEAMFORMING BASED ON JOINTLY ESTIMATING COVARIANCE MATRIX AND STEERING VECTOR
    Gu, Yujie
    Leshem, Amir
    2011 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2011, : 2640 - 2643
  • [10] Efficient estimation of high-dimensional dynamic covariance by risk factor mapping: Applications for financial risk management
    So, Mike K. P.
    Chan, Thomas W. C.
    Chu, Amanda M. Y.
    JOURNAL OF ECONOMETRICS, 2022, 227 (01) : 151 - 167