The Effect of the Prior and the Experimental Design on the Inference of the Precision Matrix in Gaussian Chain Graph Models

被引:0
作者
Shen, Yunyi [1 ,2 ]
Solis-Lemus, Claudia [3 ]
机构
[1] Univ Wisconsin, Dept Stat, Madison, WI USA
[2] Univ Wisconsin, Dept Wildlife Ecol, Madison, WI USA
[3] Univ Wisconsin, Wisconsin Inst Discovery, Dept Plant Pathol, Madison, WI 53706 USA
关键词
Linear regression; Graphical models; Interaction network; Microbiome; NETWORK ANALYSIS; COVARIANCE MATRICES; PATTERNS;
D O I
10.1007/s13253-024-00621-1
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Here, we investigate whether (and how) experimental design could aid in the estimation of the precision matrix in a Gaussian chain graph model, especially the interplay between the design, the effect of the experiment and prior knowledge about the effect. Estimation of the precision matrix is a fundamental task to infer biological graphical structures like microbial networks. We compare the marginal posterior precision of the precision matrix under four priors: flat, conjugate Normal-Wishart, Normal-MGIG and a general independent. Under the flat and conjugate priors, the Laplace-approximated posterior precision is not a function of the design matrix rendering useless any efforts to find an optimal experimental design to infer the precision matrix. In contrast, the Normal-MGIG and general independent priors do allow for the search of optimal experimental designs, yet there is a sharp upper bound on the information that can be extracted from a given experiment. We confirm our theoretical findings via a simulation study comparing (i) the KL divergence between prior and posterior and (ii) the Stein's loss difference of MAPs between random and no experiment. Our findings provide practical advice for domain scientists conducting experiments to better infer the precision matrix as a representation of a biological network.
引用
收藏
页码:800 / 869
页数:70
相关论文
共 31 条
[1]  
Anderson B. D., 2007, Optimal control: linear quadratic methods
[2]   Topological distortion and reorganized modular structure of gut microbial co-occurrence networks in inflammatory bowel disease [J].
Baldassano, Steven N. ;
Bassett, Danielle S. .
SCIENTIFIC REPORTS, 2016, 6
[3]   Using network analysis to explore co-occurrence patterns in soil microbial communities [J].
Barberan, Albert ;
Bates, Scott T. ;
Casamayor, Emilio O. ;
Fierer, Noah .
ISME JOURNAL, 2012, 6 (02) :343-351
[4]   EXPONENTIAL TRANSFORMATION MODELS [J].
BARNDORFFNIELSEN, O ;
BLAESILD, P ;
JENSEN, JL ;
JORGENSEN, B .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1982, 379 (1776) :41-65
[5]  
Boyd SP, 1991, CITESEER
[6]   Bayesian experimental design: A review [J].
Chaloner, K ;
Verdinelli, I .
STATISTICAL SCIENCE, 1995, 10 (03) :273-304
[7]   Gut microbiota composition correlates with diet and health in the elderly [J].
Claesson, Marcus J. ;
Jeffery, Ian B. ;
Conde, Susana ;
Power, Susan E. ;
O'Connor, Eibhlis M. ;
Cusack, Siobhan ;
Harris, Hugh M. B. ;
Coakley, Mairead ;
Lakshminarayanan, Bhuvaneswari ;
O'Sullivan, Orla ;
Fitzgerald, Gerald F. ;
Deane, Jennifer ;
O'Connor, Michael ;
Harnedy, Norma ;
O'Connor, Kieran ;
O'Mahony, Denis ;
van Sinderen, Douwe ;
Wallace, Martina ;
Brennan, Lorraine ;
Stanton, Catherine ;
Marchesi, Julian R. ;
Fitzgerald, Anthony P. ;
Shanahan, Fergus ;
Hill, Colin ;
Ross, R. Paul ;
O'Toole, Paul W. .
NATURE, 2012, 488 (7410) :178-+
[8]   Nonconjugate Bayesian estimation of covariance matrices and its use in hierarchical models [J].
Daniels, MJ ;
Kass, RE .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1999, 94 (448) :1254-1263
[9]   Bayesian analysis of covariance matrices and dynamic models for longitudinal data [J].
Daniels, MJ ;
Pourahmadi, M .
BIOMETRIKA, 2002, 89 (03) :553-566
[10]   ESTIMATION OF A COVARIANCE-MATRIX UNDER STEINS LOSS [J].
DEY, DK ;
SRINIVASAN, C .
ANNALS OF STATISTICS, 1985, 13 (04) :1581-1591