Development of a CRISPR/Cas12a-based fluorescent detection method of Senecavirus A

被引:0
作者
He, Wei [1 ,2 ]
Liao, Kai [1 ]
Li, Ruixue [2 ]
Peng, Wanqing [1 ]
Qian, Bingxu [1 ]
Zeng, Dexin [1 ]
Tang, Fang [1 ]
Xue, Feng [1 ,3 ]
Jung, Yong Sam [1 ]
Dai, Jianjun [4 ]
机构
[1] Nanjing Agr Univ, MOE Joint Int Res Lab Anim Hlth & Food Safety, Nanjing 210095, Peoples R China
[2] Ningxia Hui Autonomous Reg Food Testing & Res Inst, Yinchuan 750002, Peoples R China
[3] Nanjing Agr Univ, Sanya Inst, Sanya 572024, Peoples R China
[4] China Pharmaceut Univ, Nanjing 211198, Peoples R China
关键词
PIVD; Senecavirus A; CRISPR/Cas12a; Ultra-sensitivity; Rapid diagnosis; ONCOLYTIC PICORNAVIRUS; VALLEY VIRUS;
D O I
10.1186/s12917-024-04116-6
中图分类号
S85 [动物医学(兽医学)];
学科分类号
0906 ;
摘要
Background Senecavirus A (SVA), identified in 2002, is known to cause porcine idiopathic vesicular disease (PIVD), which presents with symptoms resembling other vesicular diseases. This similarity complicates field diagnosis. Conventional molecular diagnostic techniques are limited by their cost, sensitivity, and requirement for complicated instrumentation. Therefore, developing an effective and accurate diagnostic method is crucial for timely identification and isolation of affected pigs, thereby preventing further disease spread.Methods In this study, we developed a highly-specific and ultra-sensitive SVA detection method powered by CRISPR/Cas12a. To enhance the availability in laboratories with varied equipment conditions, microplate reader and ultraviolet light transilluminator were introduced. Moreover, PCR amplification has also been incorporated into this method to improve sensitivity. The specificity and sensitivity of this method were determined following the preparation of the recombinant Cas12a protein and optimization of the CRISPR/Cas12a-based trans-cleavage system.Results The method demonstrated no cross-reactivity with ten kinds of viruses of swine. The minimum template concentration required to activate substantial trans-cleavage activity was determined to be 106 copies/mu L of SVA templates. However, when PCR amplification was incorporated, the method achieved a detection limit of one copy of SVA templates per reaction. It also exhibited 100% accuracy in simulated sample testing. The complete testing process does not exceed three hours.Conclusions Importantly, this method utilizes standard laboratory equipment, making it accessible for use in resource-limited settings and facilitating widespread and ultra-sensitive screening during epidemics. Overall, the development of this method not only broadens the array of tools available for detecting SVA but also holds significant promise for controlling the spread of PIVD.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Development of a CRISPR/Cas12a-based method to detect invasive aquatic species
    Zhang, Minlin
    Zuo, Xiaoling
    Liang, Jiantao
    Lu, Keyu
    Wei, Liyun
    Yan, Xu
    Zhao, Huihong
    Gan, Songyong
    Wu, Jinhui
    Wang, Qing
    AQUACULTURE, 2024, 591
  • [2] A CRISPR/Cas12a-based label-free fluorescent method for visual signal output
    Wang, Liu
    He, Fang
    Chen, Xueyun
    He, Kaiyu
    Bai, Linlin
    Wang, Qiang
    Zhang, Fang
    Xu, Xiahong
    SENSORS AND ACTUATORS B-CHEMICAL, 2022, 370
  • [3] A CRISPR/Cas12a-based label-free fluorescent method for visual signal output
    Wang, Liu
    He, Fang
    Chen, Xueyun
    He, Kaiyu
    Bai, Linlin
    Wang, Qiang
    Zhang, Fang
    Xu, Xiahong
    SENSORS AND ACTUATORS B-CHEMICAL, 2022, 370
  • [4] Development and validation of a CRISPR/Cas12a-based platform for rapid and sensitive detection of the large yellow croaker iridovirus
    Zhang, Chaozheng
    Tao, Zhen
    Ye, Haoda
    Wang, Pengcheng
    Jiang, Min
    Benard, Kaitira
    Li, Weiye
    Yan, Xiaojun
    AQUACULTURE, 2024, 584
  • [5] RPA-CRISPR/Cas12a-Based Detection of Haemophilus parasuis
    Zhang, Kunli
    Sun, Zeyi
    Shi, Keda
    Yang, Dongxia
    Bian, Zhibiao
    Li, Yan
    Gou, Hongchao
    Jiang, Zhiyong
    Yang, Nanling
    Chu, Pinpin
    Zhai, Shaolun
    Wei, Zhanyong
    Li, Chunling
    ANIMALS, 2023, 13 (21):
  • [6] Ratiometric fluorescent probe: a sensitive and reliable reporter for the CRISPR/Cas12a-based biosensing platform
    Liu, Qiang
    Liu, Mei
    Jin, Yan
    Li, Baoxin
    ANALYST, 2022, 147 (11) : 2567 - 2574
  • [7] CRISPR/Cas12a-Based Detection Platform for Early and Rapid Diagnosis of Scrub Typhus
    Bhardwaj, Pooja
    Nanaware, Nikita Shrikant
    Behera, Sthita Pragnya
    Kulkarni, Smita
    Deval, Hirawati
    Kumar, Rajesh
    Dwivedi, Gaurav Raj
    Kant, Rajni
    Singh, Rajeev
    BIOSENSORS-BASEL, 2023, 13 (12):
  • [8] ERA-CRISPR/Cas12a-based, fast and specific diagnostic detection for Chlamydia pneumoniae
    Zhou, Yanxia
    Yan, Zijun
    Zhou, Shi
    Li, Weiwei
    Yang, Hongyu
    Chen, Hongliang
    Deng, Zhongliang
    Zeng, Qilin
    Sun, Peiyuan
    Wu, Yimou
    FRONTIERS IN CELLULAR AND INFECTION MICROBIOLOGY, 2024, 14
  • [9] Development and Validation of RAA-CRISPR/Cas12a-Based Assay for Detecting Porcine Rotavirus
    Huang, Siyu
    Du, Longhuan
    Liu, Song
    Yang, Qingcheng
    Lei, Changwei
    Wang, Hongning
    Yang, Liu
    Yang, Xin
    ANIMALS, 2024, 14 (23):
  • [10] An rolling circle amplification-assisted CRISPR/Cas12a-based biosensor for protein detection
    Wang, Wen
    Geng, Lu
    Zhang, Yiyang
    Shen, Weili
    Bi, Meng
    Gong, Tingting
    Liu, Cong
    Hu, Zhiyong
    Guo, Changjiang
    Sun, Tieqiang
    MICROCHEMICAL JOURNAL, 2024, 200