Robust tuning of Twin-in-the-Loop vehicle dynamics controls via randomized optimization
被引:0
作者:
Dettu, Federico
论文数: 0引用数: 0
h-index: 0
机构:
Politecn Milan, Dipartimento Elettron Informaz & Bioingn, Pzza L da Vinci 32, I-20133 Milan, ItalyPolitecn Milan, Dipartimento Elettron Informaz & Bioingn, Pzza L da Vinci 32, I-20133 Milan, Italy
Dettu, Federico
[1
]
Formentin, Simone
论文数: 0引用数: 0
h-index: 0
机构:
Politecn Milan, Dipartimento Elettron Informaz & Bioingn, Pzza L da Vinci 32, I-20133 Milan, ItalyPolitecn Milan, Dipartimento Elettron Informaz & Bioingn, Pzza L da Vinci 32, I-20133 Milan, Italy
Formentin, Simone
[1
]
Savaresi, Sergio Matteo
论文数: 0引用数: 0
h-index: 0
机构:
Politecn Milan, Dipartimento Elettron Informaz & Bioingn, Pzza L da Vinci 32, I-20133 Milan, ItalyPolitecn Milan, Dipartimento Elettron Informaz & Bioingn, Pzza L da Vinci 32, I-20133 Milan, Italy
Savaresi, Sergio Matteo
[1
]
机构:
[1] Politecn Milan, Dipartimento Elettron Informaz & Bioingn, Pzza L da Vinci 32, I-20133 Milan, Italy
The Twin-in-the-Loop (TiL) framework for vehicle dynamics control has been recently introduced with the goal of simplifying the end-of-line-tuning phase and enhancing the controller performance. In TiL schemes, high-fidelity vehicle models are run on-board to compute the nominal control action, while a simple closed-loop compensator takes the model-mismatch into account. In this paper, we discuss the robustness properties of the TiL approach to uncertain working conditions. In particular, we show that, due to the model-free nature of the compensator tuning, randomized tools represent an effective way to guarantee a certain level of robustness to different operating conditions with reasonable confidence levels. Simulation results illustrate the effectiveness of the proposed approach within a braking control case study