共 36 条
- [1] Parfitt J., Barthel M., MacNaughton S., Food waste within food supply chains: Quantification and potential for change to 2050, Philos. Trans. R. Soc. B Biol. Sci, 365, 1554, pp. 3065-3081, (2010)
- [2] Thi N. B. D., Lin C. Y., Kumar G., Waste-to-wealth for valorization of food waste to hydrogen and methane towards creating a sustainable ideal source of bioenergy, J. Clean. Prod, 122, pp. 29-41, (2016)
- [3] El Naggar A. M. A., Gobara H. M., El Sayed H. A., Soliman F. S., New advances in hydrogen production via the catalytic decomposition of wax by-products using nanoparticles of SBA frame-worked MoO3, Energy Convers. Manag, 106, pp. 615-624, (2015)
- [4] Hosseini S. E., Wahid M. A., Ganjehkaviri A., An overview of renewable hydrogen production from thermochemical process of oil palm solid waste in Malaysia, Energy Convers. Manag, 94, pp. 415-429, (2015)
- [5] Solid waste management & Recycling Technology of Japan - Toward a Sustainable Society, (2012)
- [6] Sakai S., Hiraoka M., Municipal solid waste incinerator residue recycling by thermal processes, Waste Manag, 20, 2–3, pp. 249-258, (2000)
- [7] Cohen B. S., Martinez H., Schroder A., Waste Management Practices in New York City, Hong Kong and Beijing, pp. 1-20, (2015)
- [8] Alert N., Processing London ’ s local food waste in an anaerobic digester avoids 3. 9 tonnes of GHG emissions Processing London ’ s local food waste in an anaerobic digester avoids 3. 9 tonnes of GHG emissions (continued), 52, 503, (2018)
- [9] Di Blasi C., Modeling and simulation of combustion processes of charring and non-charring solid fuels, Prog. Energy Combust. Sci, 19, 1, pp. 71-104, (1993)
- [10] Jahirul M. I., Rasul M. G., Chowdhury A. A., Ashwath N., Biofuels production through biomass pyrolysis- A technological review, Energies, 5, 12, pp. 4952-5001, (2012)