MHD Flow of Hybrid Nanofluid Between Convergent/Divergent Channel by Using Daftardar-Jafari Method

被引:3
作者
Bouchireb, Abdelouahab [1 ]
Khan, Ilyas [2 ]
Kezzar, Mohamed [3 ]
Alqahtani, Sultan [4 ]
Sari, Mohamed R. [5 ]
Rafique, Khuram [6 ]
Tabet, Ismail [7 ]
机构
[1] Univ Kasdi Merbah, Drilling & MCP Dept, BP 511, Ouargla 30000, Algeria
[2] Majmaah Univ, Coll Sci Al Zulfi, Dept Math, Al Majmaah 11952, Saudi Arabia
[3] Univ 20 Aout 1955, Mech Engn Dept, El Hadaiek Rd,BO 26, Skikda 21000, Algeria
[4] King Khalid Univ, Coll Engn, Mech Engn Dept, Abha, Saudi Arabia
[5] Badji Mokhtar Univ Annaba, Lab Ind Mech, BO 12, Sidi Amar Annaba 23000, Algeria
[6] Univ Sialkot, Dept Math, Sialkot 51040, Pakistan
[7] Univ 20 Aout 1955, Phys Engn Dept, El Hadaiek Rd,BO 26, Skikda 21000, Algeria
关键词
Hybrid nanofluid; Mixture base fluid; Shape of nanoparticles; Daftardar-Jafari method; Runge-Kutta-Fehlberg 4th-5th order; JEFFERY-HAMEL FLOW; HEAT-TRANSFER; SHEET; TRANSPORT; WALLS;
D O I
10.1007/s12668-024-01401-4
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
Alloys AA7072\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$AA7072$$\end{document} and AA7075\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$AA7075$$\end{document} are significant with thermal, physical, and mechanical characteristics; these are extensively used in manufacturing of spacecraft, aircraft parts. and bio nanoscience applications. The main interest of the present work is numerical and analytical investigation of heat transfer in MHD Jeffery-Hamel flow of a hybrid nanofluid with nanoparticle shapes (i.e., spherical, cylinder, and platelet) and mixture base fluid (H2O-C2H6O2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${H}_{2}O-{C}_{2}{H}_{6}{O}_{2}$$\end{document} (50%-50%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$50\%-50\%$$\end{document})). Hybrid nanofluid containing alloys AA7072\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$AA7072$$\end{document} and AA7075\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$AA7075$$\end{document} as the nanoparticles is considered. The solution of the studied problem has been presented using a new analytical method (Daftardar-Jafari method). The obtained results in particular cases are compared to those gained by the HAM-based Mathematica package BVPh 2 and by the Runge-Kutta-Fehlberg 4th-5th order (RKF-45) for validation. The effect of diverse parameters for instance is as follows: external magnetic field Ha is an element of 0-500\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Ha\in \left[0-500\right]$$\end{document}, Reynolds number Re is an element of 50-150\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Re\in \left[50-150\right]$$\end{document}, opening of the channel alpha is an element of +/- 2 degrees-+/- 6 degrees\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in \left[\pm 2<^>\circ -\pm 6<^>\circ \right]$$\end{document}, hybrid nanoparticles phi AA7072+AA7075 is an element of 0-6%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varphi }_{AA7072+AA7075}\in \left[0-6\%\right]$$\end{document}, Hartmann number Ha is an element of 0-150\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Ha\in \left[0-150\right]$$\end{document}, and nanoparticle shapes (i.e., spherical, cylinder, and platelet) on dimensionless velocity and temperature profiles, as well as on the behavior of skin friction coefficient and Nusselt number. The results indicate that the skin friction coefficient and Nusselt numbers decrease with the increasing nanoparticle shapes. In addition, the study's findings were found to be in exceptional agreement with existing literature results.
引用
收藏
页码:1583 / 1600
页数:18
相关论文
共 40 条
[1]   Energy Transfer in Mixed Convection MHD Flow of Nanofluid Containing Different Shapes of Nanoparticles in a Channel Filled with Saturated Porous Medium [J].
Aaiza, Gul ;
Khan, Ilyas ;
Shafie, Sharidan .
NANOSCALE RESEARCH LETTERS, 2015, 10 :1-14
[2]   Thermal transport investigation in AA7072 and AA7075 aluminum alloys nanomaterials based radiative nanofluids by considering the multiple physical flow conditions [J].
Adnan ;
Khan, Sheikh Irfan Ullah ;
Khan, Umar ;
Ahmed, Naveed ;
Mohyud-Din, Syed Tauseef ;
Khan, Ilyas ;
Nisar, Kottakkaran Sooppy .
SCIENTIFIC REPORTS, 2021, 11 (01)
[3]   A review of thermophysical properties of water based composite nanofluids [J].
Akilu, Suleiman ;
Sharma, K. V. ;
Baheta, Aklilu Tesfamichael ;
Mamat, Rizalman .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2016, 66 :654-678
[4]   Numerical Analysis of Micro-Rotation Effect on Nanofluid Flow for Vertical Riga Plate [J].
Alotaibi, Hammad ;
Rafique, Khuram .
CRYSTALS, 2021, 11 (11)
[5]  
Bansal L., 1994, MAGNETOFLUIDDYNAMICS
[6]   Shape effect of nanoparticles on MHD nanofluid flow over a stretching sheet in the presence of heat source/sink with entropy generation [J].
Berrehal, Hamza ;
Sowmya, G. ;
Makinde, Oluwole Daniel .
INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 2022, 32 (05) :1643-1663
[7]  
Biswal U., 2020, J APPL COMPUT MECH, V8
[8]   Flow measurement with an electromagnetic flowmeter in two-phase bubbly and slug flow regimes [J].
Cha, JE ;
Ahn, YC ;
Kim, MH .
FLOW MEASUREMENT AND INSTRUMENTATION, 2002, 12 (5-6) :329-339
[9]   Numerical Investigation of Hydromagnetic Hybrid Cu - Al2O3/Water Nanofluid Flow over a Permeable Stretching Sheet with Suction [J].
Devi, S. P. Anjali ;
Devi, S. Suriya Uma .
INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2016, 17 (05) :249-257
[10]   Analytical solution and heat transfer of two-phase nanofluid flow between non-parallel walls considering Joule heating effect [J].
Dogonchi, A. S. ;
Ganji, D. D. .
POWDER TECHNOLOGY, 2017, 318 :390-400