Utilising Artificial Intelligence (AI) in the Diagnosis of Psychiatric Disorders: A Narrative Review

被引:1
作者
Khare, Mansi [1 ,3 ]
Acharya, Sourya [1 ]
Shukla, Samarth [2 ]
Harshita [1 ]
Sachdev, Ankita [1 ]
机构
[1] Datta Meghe Inst Med Sci, Dept Med, Wardha, Maharashtra, India
[2] Datta Meghe Inst Med Sci, Dept Pathol, Wardha, Maharashtra, India
[3] Datta Meghe Inst Med Sci, Wardha 442001, Maharashtra, India
关键词
Bipolar; Mental; Neuroimaging; Robotics; Schizophrenia; MACHINE; PREDICTION; BIOMARKERS; PSYCHOSIS;
D O I
10.7860/JCDR/2023/61698.19249
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
In the era of machinery, Artificial Intelligence (AI) has become the new tool for managing patients in psychiatry. Nowadays, many psychiatric disorders are being diagnosed and treated with the help of AI. New technologies like Machine Learning (ML), robots, Deep Learning (DL), and sensor -based systems provide a different perspective on psychiatric disorders. The present narrative review article summarised the use of AI in diagnosing and treating psychiatric disorders. AI can assist a patients with a psychiatric diseases in prognosis, clinical diagnosis, management therapy, and addressing clinical and technological issues. It highlights various AI methods used in mental healthcare, with a focus on multiple ML perspectives. Additionally, AI has the potential to address several factors, including privacy, transparency, bias, and other social and ethical considerations. The aim of the present review was to redefine mental disorders more objectively, personalise treatments, facilitate early diagnosis, and provide patients with more choices in their care. Through the present article, author aimed to highlight the use of AI in the diagnosis of various psychiatric disorders such as depression, schizophrenia, bipolar disorder, Autism Spectrum Disorder (ASD), and Alzheimer's Disease (AD).
引用
收藏
页码:OE1 / OE5
页数:5
相关论文
共 49 条
[1]   Artificial Intelligence in the Fight Against COVID-19: Scoping Review [J].
Abd-Alrazaq, Alaa ;
Alajlani, Mohannad ;
Alhuwail, Dari ;
Schneider, Jens ;
Al-Kuwari, Saif ;
Shah, Zubair ;
Hamdi, Mounir ;
Househ, Mowafa .
JOURNAL OF MEDICAL INTERNET RESEARCH, 2020, 22 (12)
[2]   CrossCheck: Integrating Self- Report, Behavioral Sensing, and Smartphone Use to Identify Digital Indicators of Psychotic Relapse [J].
Ben-Zeev, Dror ;
Brian, Rachel ;
Wang, Rui ;
Wang, Weichen ;
Campbell, Andrew T. ;
Aung, Min S. H. ;
Merrill, Michael ;
Tseng, Vincent W. S. ;
Choudhury, Tanzeem ;
Hauser, Marta ;
Kane, John M. ;
Scherer, Emily A. .
PSYCHIATRIC REHABILITATION JOURNAL, 2017, 40 (03) :266-275
[3]   Multivariate pattern analysis strategies in detection of remitted major depressive disorder using resting state functional connectivity [J].
Bhaumik, Runa ;
Jenkins, Lisanne M. ;
Gowins, Jennifer R. ;
Jacobs, Rachel H. ;
Barba, Alyssa ;
Bhaumik, Dulal K. ;
Langenecker, Scott A. .
NEUROIMAGE-CLINICAL, 2017, 16 :390-398
[4]   Lifetime Psychiatric Disorders in School-aged Offspring of Parents With Bipolar Disorder The Pittsburgh Bipolar Offspring Study [J].
Birmaher, Boris ;
Axelson, David ;
Monk, Kelly ;
Kalas, Catherine ;
Goldstein, Benjamin ;
Hickey, Mary Beth ;
Obreja, Mihaela ;
Ehmann, Mary ;
Iyengar, Satish ;
Shamseddeen, Wael ;
Kupfer, David ;
Brent, David .
ARCHIVES OF GENERAL PSYCHIATRY, 2009, 66 (03) :287-296
[5]   Use of machine learning to improve autism screening and diagnostic instruments: effectiveness, efficiency, and multi-instrument fusion [J].
Bone, Daniel ;
Bishop, Somer L. ;
Black, Matthew P. ;
Goodwin, Matthew S. ;
Lord, Catherine ;
Narayanan, Shrikanth S. .
JOURNAL OF CHILD PSYCHOLOGY AND PSYCHIATRY, 2016, 57 (08) :927-937
[6]   A deep learning approach to predict inter-omics interactions in multi-layer networks [J].
Borhani, Niloofar ;
Ghaisari, Jafar ;
Abedi, Maryam ;
Kamali, Marzieh ;
Gheisari, Yousof .
BMC BIOINFORMATICS, 2022, 23 (01)
[7]   e-PTSD: an overview on how new technologies can improve prediction and assessment of Posttraumatic Stress Disorder (PTSD) [J].
Bourla, Alexis ;
Mouchabac, Stephane ;
El Hage, Wissam ;
Ferreri, Florian .
EUROPEAN JOURNAL OF PSYCHOTRAUMATOLOGY, 2018, 9
[8]   Efficacy and Safety of Deep Transcranial Magnetic Stimulation for Obsessive-Compulsive Disorder: A Prospective Multicenter Randomized Double-Blind Placebo-Controlled Trial [J].
Carmi, Lior ;
Tendler, Aron ;
Bystritsky, Alexander ;
Hollander, Eric ;
Blumberger, Daniel M. ;
Daskalakis, Jeff ;
Ward, Herbert ;
Lapidus, Kyle ;
Goodman, Wayne ;
Casuto, Leah ;
Feifel, David ;
Barnea-Ygael, Noam ;
Roth, Yiftach ;
Zangen, Abraham ;
Zohar, Joseph .
AMERICAN JOURNAL OF PSYCHIATRY, 2019, 176 (11) :931-938
[9]   Multi-omic biomarker identification and validation for diagnosing warzone-related post-traumatic stress disorder [J].
Dean, Kelsey R. ;
Hammamieh, Rasha ;
Mellon, Synthia H. ;
Abu-Amara, Duna ;
Flory, Janine D. ;
Guffanti, Guia ;
Wang, Kai ;
Daigle, Bernie J., Jr. ;
Gautam, Aarti ;
Lee, Inyoul ;
Yang, Ruoting ;
Almli, Lynn M. ;
Bersani, F. Saverio ;
Chakraborty, Nabarun ;
Donohue, Duncan ;
Kerley, Kimberly ;
Kim, Taek-Kyun ;
Laska, Eugene ;
Lee, Min Young ;
Lindqvist, Daniel ;
Lori, Adriana ;
Lu, Liangqun ;
Misganaw, Burook ;
Muhie, Seid ;
Newman, Jennifer ;
Price, Nathan D. ;
Qin, Shizhen ;
Reus, Victor, I ;
Siegel, Carole ;
Somvanshi, Pramod R. ;
Thakur, Gunjan S. ;
Zhou, Yong ;
Hood, Leroy ;
Ressler, Kerry J. ;
Wolkowitz, Owen M. ;
Yehuda, Rachel ;
Jett, Marti ;
Doyle, Francis J., III ;
Marmar, Charles .
MOLECULAR PSYCHIATRY, 2020, 25 (12) :3337-3349
[10]  
Deshpande M, 2017, PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON INTELLIGENT SUSTAINABLE SYSTEMS (ICISS 2017), P858, DOI 10.1109/ISS1.2017.8389299