From the quantum breakdown model to the lattice gauge theory

被引:2
|
作者
Hu, Yu-Min [1 ,2 ]
Lian, Biao [2 ]
机构
[1] Tsinghua Univ, Inst Adv Study, Beijing 100084, Peoples R China
[2] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA
来源
AAPPS BULLETIN | 2024年 / 34卷 / 01期
基金
美国国家科学基金会;
关键词
STATISTICAL-MECHANICS; THERMALIZATION; INVARIANCE; DYNAMICS; CHAOS;
D O I
10.1007/s43673-024-00128-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The one-dimensional quantum breakdown model, which features spatially asymmetric fermionic interactions simulating the electrical breakdown phenomenon, exhibits an exponential U(1) symmetry and a variety of dynamical phases including many-body localization and quantum chaos with quantum scar states. We investigate the minimal quantum breakdown model with the minimal number of on-site fermion orbitals required for the interaction and identify a large number of local conserved charges in the model. We then reveal a mapping between the minimal quantum breakdown model in certain charge sectors and a quantum link model which simulates the U(1) lattice gauge theory and show that the local conserved charges map to the gauge symmetry generators. A special charge sector of the model further maps to the PXP model, which shows quantum many-body scars. This mapping unveils the rich dynamics in different Krylov subspaces characterized by different gauge configurations in the quantum breakdown model.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Twenty-First Century Lattice Gauge Theory: Results from the Quantum Chromodynamics Lagrangian
    Kronfeld, Andreas S.
    ANNUAL REVIEW OF NUCLEAR AND PARTICLE SCIENCE, VOL 62, 2012, 62 : 265 - 284
  • [32] Quantum Computation of Dynamical Quantum Phase Transitions and Entanglement Tomography in a Lattice Gauge Theory
    Mueller, Niklas
    Carolan, Joseph A.
    Connelly, Andrew
    Davoudi, Zohreh
    Dumitrescu, Eugene F.
    Yeter-Aydeniz, Kuebra
    PRX QUANTUM, 2023, 4 (03):
  • [33] Simulating Z2 lattice gauge theory on a quantum computer
    Charles, Clement
    Gustafson, Erik J.
    Hardt, Elizabeth
    Herren, Florian
    Hogan, Norman
    Lamm, Henry
    Starecheski, Sara
    Van de Water, Roth S.
    Wagman, Michael L.
    PHYSICAL REVIEW E, 2024, 109 (01)
  • [34] Confinement in a Z2 lattice gauge theory on a quantum computer
    Mildenberger, Julius
    Mruczkiewicz, Wojciech
    Halimeh, Jad C.
    Jiang, Zhang
    Hauke, Philipp
    NATURE PHYSICS, 2025, 21 (02) : 312 - 317
  • [35] Discrete-time quantum walks as fermions of lattice gauge theory
    Arnault, Pablo
    Perez, Armando
    Arrighi, Pablo
    Farrelly, Terry
    PHYSICAL REVIEW A, 2019, 99 (03)
  • [36] QUANTUM FIELD-THEORY WITH SPONTANEOUS BREAKDOWN OF CHIRAL-GAUGE INVARIANCE
    NAKANISHI, N
    PROGRESS OF THEORETICAL PHYSICS, 1973, 50 (04): : 1388 - 1396
  • [37] Lattice Gauge theory before lattice Gauge theory (vol 49, 25, 2024)
    Kogut, J. B.
    EUROPEAN PHYSICAL JOURNAL H, 2025, 50 (01):
  • [38] THE GLUEBALL SPECTRUM FROM LATTICE GAUGE-THEORY
    MICHAEL, C
    ACTA PHYSICA POLONICA B, 1990, 21 (02): : 119 - 127
  • [39] Loop quantization from a lattice gauge theory perspective
    Zapata, JA
    CLASSICAL AND QUANTUM GRAVITY, 2004, 21 (17) : L115 - L121
  • [40] THE RUNNING COUPLING FROM LATTICE GAUGE-THEORY
    MICHAEL, C
    PHYSICS LETTERS B, 1992, 283 (1-2) : 103 - 106