Compact stars with non-uniform relativistic polytrope

被引:2
作者
Nouh, Mohamed I. [1 ]
Foda, Mona M. [2 ]
Aboueisha, Mohamed S. [1 ]
机构
[1] Natl Res Inst Astron & Geophys, Astron Dept, Cairo 11421, Helwan, Egypt
[2] Cairo Univ, Astron Dept, Fac Sci, Giza, Egypt
关键词
Composite polytrope; Compact stars; Relativistic effects; General relativity; Mass-radius relation; EQUATION-OF-STATE; NEUTRON-STARS; MASSES;
D O I
10.1038/s41598-024-65973-7
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper presents new relativistic composite polytropic models for compact stars by simultaneously solving Einstein field equations with the polytropic state equation to simulate the spherically symmetric, static matter distribution. Using a non-uniform polytropic index, we get the Tolman-Oppenheimer-Volkoff equation for the relativistic composite polytrope (CTOV). To analyze the star's structure, we numerically solve the CTOV equation and compute the Emden and mass functions for various relativistic parameters and polytropic indices appropriate for neutron stars. The calculation results show that, as the relativistic parameter approaches zero, we recover the well-known Lane-Emden equation from the Newtonian theory of polytropic stars; thus, testing the computational code by comparing composite Newtonian models to those in the literature yields good agreement. We compute composite relativistic models for the neutron star candidates Cen X-3, SAXJ1808.4-3658, and PSR J1614-22304. We compare the findings with various existing models in the literature. Based on the accepted models for PSR J1614-22304 and Cen X-3, the star's core radius is predicted to be between 50 and 60% percent of its total radius, while we found that the radius of the core of star SAXJ1808.4-3658 is around 30% of the total radius. Our findings show that the neutron star structure may be approximated by a composite relativistic polytrope, resulting in masses and radii that are quite consistent with observation.
引用
收藏
页数:17
相关论文
共 44 条
[1]   The double polytrope for anisotropic matter: Newtonian case [J].
Abellan, G. ;
Fuenmayor, E. ;
Herrera, L. .
PHYSICS OF THE DARK UNIVERSE, 2020, 28
[2]   Analysis of the fractional relativistic polytropic gas sphere [J].
Aboueisha, Mohamed S. ;
Nouh, Mohamed I. ;
Abdel-Salam, Eamad A. -B. ;
Kamel, Tarek M. ;
Beheary, M. M. ;
Gadallah, Kamel A. K. .
SCIENTIFIC REPORTS, 2023, 13 (01)
[3]   Maximal masses of white dwarfs for polytropes in R2 gravity and theoretical constraints [J].
Astashenok, A., V ;
Odintsov, S. D. ;
Oikonomou, V. K. .
PHYSICAL REVIEW D, 2022, 106 (12)
[4]  
Bicak J., 2006, Encycl. Math. Phys, V2, P165, DOI [10.1016/B0-12-512666-2/00057-2, DOI 10.1016/B0-12-512666-2/00057-2]
[5]   Mathematical model for Sagittarius A and related Tolman-Oppenheimer-Volkoff equations [J].
Bors, Dorota ;
Stanczy, Robert .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (11) :12052-12063
[6]   DYNAMICAL INSTABILITY OF GASEOUS MASSES APPROACHING SCHWARZSCHILD LIMIT IN GENERAL RELATIVITY [J].
CHANDRASEKHAR, S .
ASTROPHYSICAL JOURNAL, 1964, 140 (02) :417-&
[7]  
Chandrasekhar S., 1939, INTRO STUDY STELLAR
[8]   Bose-Einstein condensate general relativistic stars [J].
Chavanis, Pierre-Henri ;
Harko, Tiberiu .
PHYSICAL REVIEW D, 2012, 86 (06)
[9]   A survey of 56 midlatitude egret error boxes for radio pulsars [J].
Crawford, Fronefield ;
Roberts, Mallory S. E. ;
Hessels, Jason W. T. ;
Ransom, Scott M. ;
Livingstone, Margaret ;
Tam, Cindy R. ;
Kaspi, Victoria M. .
ASTROPHYSICAL JOURNAL, 2006, 652 (02) :1499-1507
[10]   Analytical representations for simple and composite polytropes and their moments of inertia [J].
Criss, Robert E. ;
Hofmeister, Anne M. .
NEW ASTRONOMY, 2015, 36 :26-31