Neural Deformable Models for 3D Bi-Ventricular Heart Shape Reconstruction and Modeling from 2D Sparse Cardiac Magnetic Resonance Imaging

被引:0
作者
Ye, Meng [1 ]
Yang, Dong [2 ]
Kanski, Mikael [3 ]
Axel, Leon [3 ]
Metaxas, Dimitris [1 ]
机构
[1] Rutgers State Univ, Piscataway, NJ 08854 USA
[2] NVIDIA, Santa Clara, CA USA
[3] NYU, Sch Med, New York, NY USA
来源
2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023) | 2023年
关键词
LEFT-VENTRICLE; MOTION; STRAIN; FLOWS;
D O I
10.1109/ICCV51070.2023.01310
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a novel neural deformable model (NDM) targeting at the reconstruction and modeling of 3D biventricular shape of the heart from 2D sparse cardiac magnetic resonance (CMR) imaging data. We model the biventricular shape using blended deformable superquadrics, which are parameterized by a set of geometric parameter functions and are capable of deforming globally and locally. While global geometric parameter functions and deformations capture gross shape features from visual data, local deformations, parameterized as neural diffeomorphic point flows, can be learned to recover the detailed heart shape. Different from iterative optimization methods used in conventional deformable model formulations, NDMs can be trained to learn such geometric parameter functions, global and local deformations from a shape distribution manifold. Our NDM can learn to densify a sparse cardiac point cloud with arbitrary scales and generate high-quality triangular meshes automatically. It also enables the implicit learning of dense correspondences among different heart shape instances for accurate cardiac shape registration. Furthermore, the parameters of NDM are intuitive, and can be used by a physician without sophisticated post-processing. Experimental results on a large CMR dataset demonstrate the improved performance of NDM over conventional methods.
引用
收藏
页码:14201 / 14210
页数:10
相关论文
共 42 条
  • [1] [Anonymous], 1991, AM J PHYSL HEART CIR
  • [2] Arsigny V, 2006, LECT NOTES COMPUT SC, V4190, P924
  • [3] A bi-ventricular cardiac atlas built from 1000+high resolution MR images of healthy subjects and an analysis of shape and motion
    Bai, Wenjia
    Shi, Wenzhe
    de Marvao, Antonio
    Dawes, Timothy J. W.
    O'Regan, Declan P.
    Cook, Stuart A.
    Rueckert, Daniel
    [J]. MEDICAL IMAGE ANALYSIS, 2015, 26 (01) : 133 - 145
  • [4] Computing large deformation metric mappings via geodesic flows of diffeomorphisms
    Beg, MF
    Miller, MI
    Trouvé, A
    Younes, L
    [J]. INTERNATIONAL JOURNAL OF COMPUTER VISION, 2005, 61 (02) : 139 - 157
  • [5] RECOGNITION-BY-COMPONENTS - A THEORY OF HUMAN IMAGE UNDERSTANDING
    BIEDERMAN, I
    [J]. PSYCHOLOGICAL REVIEW, 1987, 94 (02) : 115 - 147
  • [6] Brezis H, 2011, UNIVERSITEXT, P1
  • [7] Chen R. T., 2020, ARXIV201103902
  • [8] Chen RTQ, 2018, 32 C NEURAL INFORM P, V31
  • [9] Shape registration with learned deformations for 3D shape reconstruction from sparse and incomplete point clouds
    Chen, Xiang
    Ravikumar, Nishant
    Xia, Yan
    Attar, Rahman
    Diaz-Pinto, Andres
    Piechnik, Stefan K.
    Neubauer, Stefan
    Petersen, Steffen E.
    Frangi, Alejandro F.
    [J]. MEDICAL IMAGE ANALYSIS, 2021, 74
  • [10] Population-based studies of myocardial hypertrophy: high resolution cardiovascular magnetic resonance atlases improve statistical power
    de Marvao, Antonio
    Dawes, Timothy J. W.
    Shi, Wenzhe
    Minas, Christopher
    Keenan, Niall G.
    Diamond, Tamara
    Durighel, Giuliana
    Montana, Giovanni
    Rueckert, Daniel
    Cook, Stuart A.
    O'Regan, Declan P.
    [J]. JOURNAL OF CARDIOVASCULAR MAGNETIC RESONANCE, 2014, 16