An evaluation of prospective COVID-19 modelling studies in the USA: from data to science translation

被引:21
作者
Nixon, Kristen [1 ]
Jindal, Sonia [1 ]
Parker, Felix [1 ]
Reich, Nicholas G. [2 ]
Ghobadi, Kimia [1 ]
Lee, Elizabeth C. [3 ]
Truelove, Shaun [3 ]
Gardner, Lauren [1 ]
Health, Lancet Digit
机构
[1] Johns Hopkins Univ, Dept Civil & Syst Engn, Baltimore, MD 21218 USA
[2] Univ Massachusetts, Sch Publ Hlth & Hlth Sci, Amherst, MA USA
[3] Johns Hopkins Bloomberg Sch Publ Hlth, Dept Epidemiol, Baltimore, MD USA
基金
美国国家科学基金会;
关键词
PREDICTION; EPIDEMIC; DYNAMICS;
D O I
10.1016/S2589-7500(22)00148-0
中图分类号
R-058 [];
学科分类号
摘要
Infectious disease modelling can serve as a powerful tool for situational awareness and decision support for policy makers. However, COVID-19 modelling efforts faced many challenges, from poor data quality to changing policy and human behaviour. To extract practical insight from the large body of COVID-19 modelling literature available, we provide a narrative review with a systematic approach that quantitatively assessed prospective, data-driven modelling studies of COVID-19 in the USA. We analysed 136 papers, and focused on the aspects of models that are essential for decision makers. We have documented the forecasting window, methodology, prediction target, datasets used, and geographical resolution for each study. We also found that a large fraction of papers did not evaluate performance (25%), express uncertainty (50%), or state limitations (36%). To remedy some of these identified gaps, we recommend the adoption of the EPIFORGE 2020 model reporting guidelines and creating an information-sharing system that is suitable for fast-paced infectious disease outbreak science.
引用
收藏
页码:E738 / E747
页数:10
相关论文
共 69 条
[1]   Mathematical Models for COVID-19 Pandemic: A Comparative Analysis [J].
Adiga, Aniruddha ;
Dubhashi, Devdatt ;
Lewis, Bryan ;
Marathe, Madhav ;
Venkatramanan, Srinivasan ;
Vullikanti, Anil .
JOURNAL OF THE INDIAN INSTITUTE OF SCIENCE, 2020, 100 (04) :793-807
[2]   Pandemic Politics: Timing State-Level Social Distancing Responses to COVID-19 [J].
Adolph, Christopher ;
Amano, Kenya ;
Bang-Jensen, Bree ;
Fullman, Nancy ;
Wilkerson, John .
JOURNAL OF HEALTH POLITICS POLICY AND LAW, 2021, 46 (02) :211-233
[3]  
Apple, COVID19 MOB TRENDS R
[4]   Rapid publications risk the integrity of science in the era of COVID-19 [J].
Bagdasarian, N. ;
Cross, G. B. ;
Fisher, D. .
BMC MEDICINE, 2020, 18 (01)
[5]   Evaluating scenarios for school reopening under COVID19 [J].
Baxter, Arden ;
Oruc, Buse Eylul ;
Asplund, John ;
Keskinocak, Pinar ;
Serban, Nicoleta .
BMC PUBLIC HEALTH, 2022, 22 (01)
[6]   The challenges of modeling and forecasting the spread of COVID-19 [J].
Bertozzi, Andrea L. ;
Franco, Elisa ;
Mohler, George ;
Short, Martin B. ;
Sledge, Daniel .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (29) :16732-16738
[7]   COVID-19 dynamics across the US: A deep learning study of human mobility and social behavior [J].
Bhouri, Mohamed Aziz ;
Costabal, Francisco Sahli ;
Wang, Hanwen ;
Linka, Kevin ;
Peirlinck, Mathias ;
Kuhl, Ellen ;
Perdikaris, Paris .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2021, 382
[8]  
Biegel H.R., 2021, Epicovda: a mechanistic covid-19 forecasting model with data assimilation, DOI 10.48550/arXiv.2105.05471
[9]   Modeling of Future COVID-19 Cases, Hospitalizations, and Deaths, by Vaccination Rates and Nonpharmaceutical Intervention Scenarios - United States, April-September 2021 [J].
Borchering, Rebecca K. ;
Viboud, Cecile ;
Howerton, Emily ;
Smith, Claire P. ;
Truelove, Shaun ;
Runge, Michael C. ;
Reich, Nicholas G. ;
Contamin, Lucie ;
Levander, John ;
Salerno, Jessica ;
van Panhuis, Wilbert ;
Kinsey, Matt ;
Tallaksen, Kate ;
Obrecht, R. Freddy ;
Asher, Laura ;
Costello, Cash ;
Kelbaugh, Michael ;
Wilson, Shelby ;
Shin, Lauren ;
Gallagher, Molly E. ;
Mullany, Luke C. ;
Rainwater-Lovett, Kaitlin ;
Lemaitre, Joseph C. ;
Dent, Juan ;
Grantz, Kyra H. ;
Kaminsky, Joshua ;
Lauer, Stephen A. ;
Lee, Elizabeth C. ;
Meredith, Hannah R. ;
Perez-Saez, Javier ;
Keegan, Lindsay T. ;
Karlen, Dean ;
Chinazzi, Matteo ;
Davis, Jessica T. ;
Mu, Kunpeng ;
Xiong, Xinyue ;
Pastore y Piontti, Ana ;
Vespignani, Alessandro ;
Srivastava, Ajitesh ;
Porebski, Przemyslaw ;
Venkatramanan, Srinivasan ;
Adiga, Aniruddha ;
Lewis, Bryan ;
Klahn, Brian ;
Outten, Joseph ;
Schlitt, James ;
Corbett, Patrick ;
Telionis, Pyrros Alexander ;
Wang, Lijing ;
Peddireddy, Akhil Sai .
MMWR-MORBIDITY AND MORTALITY WEEKLY REPORT, 2021, 70 (19) :719-724
[10]  
Carnegie Mellon University Delphi Group, COVIDCAST DASHB