Recent advances in elaborate interface regulation of BiVO4 photoanode for photoelectrochemical water splitting

被引:10
|
作者
Wang, Liming [1 ]
Zhang, Yaping [1 ]
Li, Weibing [1 ]
Wang, Lei [1 ]
机构
[1] Qingdao Univ Sci & Technol, Coll Environm & Safety Engn, Key Lab Ecochem Engn, Int Sci & Technol Cooperat Base Ecochem Engn & Gre, Qingdao 266042, Peoples R China
来源
MATERIALS REPORTS: ENERGY | 2023年 / 3卷 / 04期
基金
中国国家自然科学基金;
关键词
Photoelectrochemical water splitting; BiVO; 4; photoanode; Charge recombination; Water oxidation reaction kinetics; Interface regulation strategy; CHARGE-CARRIER SEPARATION; OXIDATION ACTIVITY; OXYGEN VACANCIES; PERFORMANCE; COCATALYST; STABILITY;
D O I
10.1016/j.matre.2023.100232
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Bismuth vanadate (BiVO4) is an excellent photoanode material for photoelectrochemical (PEC) water splitting system, possessing high theoretical photoelectrocatalytic conversion efficiency. However, the actual PEC activity and stability of BiVO4 are faced with great challenges due to factors such as severe charge recombination and slow water oxidation kinetics at the interface. Therefore, various interface regulation strategies have been adopted to optimize the BiVO4 photoanode. This review provides an in-depth analysis for the mechanism of interface regulation strategies from the perspective of factors affecting the PEC performance of BiVO4 photoanodes. These interface regulation strategies improve the PEC performance of BiVO4 photoanode by promoting charge separation and transfer, accelerating interfacial reaction kinetics, and enhancing stability. The research on the interface regulation strategies of BiVO4 photoanode is of great significance for promoting the development of PEC water splitting technology. At the same time, it also has inspiration for providing new ideas and methods for designing and preparing efficient and stable catalytic materials.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Steel slag source-derived FeOOH for enhanced BiVO4 photoelectrochemical water splitting
    Chen, Pengliang
    Zhong, Shiming
    Cheng, Xingxing
    Wang, Zhiqiang
    Wang, Xuetao
    Fang, Baizeng
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2024, 655 : 417 - 426
  • [22] FeOOH/rGO/BiVO4 Photoanode for Highly Enhanced Photoelectrochemical Water Splitting Performance
    Zeng, Guihua
    Hou, Liqiong
    Zhang, Jialing
    Zhu, Jiaqian
    Yu, Xiang
    Fu, Xionghui
    Zhu, Yi
    Zhang, Yuanming
    CHEMCATCHEM, 2020, 12 (14) : 3769 - 3775
  • [23] Enhanced performance of NiF2/BiVO4 photoanode for photoelectrochemical water splitting
    Ziwei Zhao
    Kaiyi Chen
    Jingwei Huang
    Lei Wang
    Houde She
    Qizhao Wang
    Frontiers in Energy, 2021, 15 : 760 - 771
  • [24] Embedding laser generated nanocrystals in BiVO4 photoanode for efficient photoelectrochemical water splitting
    Jian, Jie
    Xu, Youxun
    Yang, Xiaokun
    Liu, Wei
    Fu, Maosen
    Yu, Huiwu
    Xu, Fei
    Feng, Fan
    Jia, Lichao
    Friedrich, Dennis
    van de Krol, Roel
    Wang, Hongqiang
    NATURE COMMUNICATIONS, 2019, 10 (1)
  • [25] Reduced graphene oxide decorated SnO2/BiVO4 photoanode for photoelectrochemical water splitting
    Bai, Shouli
    Tian, Ke
    Meng, Jonathan Chenhui
    Zhao, Yingying
    Sun, Jianhua
    Zhang, Kewei
    Feng, Yongjun
    Luo, Ruixian
    Li, Dianqing
    Chen, Aifan
    JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 855
  • [26] Emerging Surface, Bulk, and Interface Engineering Strategies on BiVO4 for Photoelectrochemical Water Splitting
    Gaikwad, Mayur A.
    Suryawanshi, Umesh P.
    Ghorpade, Uma V.
    Jang, Jun Sung
    Suryawanshi, Mahesh P.
    Kim, Jin Hyeok
    SMALL, 2022, 18 (10)
  • [27] Photothermal effect and hole transport properties of polyaniline for enhanced photoelectrochemical water splitting of BiVO4 photoanode
    Li, Haolun
    Lyu, Mingxin
    Chen, Pengliang
    Tian, Yingnan
    Kang, Jianye
    Lai, Yanhua
    Cheng, Xingxing
    Dong, Zhen
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2025, 684 : 758 - 768
  • [28] Photochemical and electrochemical co-regulation of the BiVO4 photoanode for water splitting
    Xu, Huimin
    Xu, Dongbo
    Deng, Shuang
    Li, Dan
    Jiang, Tianyao
    Li, Longhua
    Fan, Weiqiang
    Lei, Yong
    Shi, Weidong
    CHEMICAL COMMUNICATIONS, 2023, 59 (23) : 3435 - 3438
  • [29] CoFe Layered Double Hydroxide Supported on Fe-Doped BiVO4 Nanoparticles as Photoanode for Photoelectrochemical Water Splitting
    Chen, Meihong
    Chang, Xiaobo
    Ma, Zhuangzhuang
    Gao, Xiaotong
    Jia, Lichao
    ACS APPLIED NANO MATERIALS, 2024, 7 (13) : 15255 - 15266
  • [30] Ag-Pi/BiVO4 heterojunction with efficient interface carrier transport for photoelectrochemical water splitting
    Gao, Yang
    Li, Xia
    Hu, Jian
    Fan, Weiqiang
    Wang, Fagen
    Xu, Dongbo
    Ding, Jinrui
    Bai, Hongye
    Shi, Weidong
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2020, 579 : 619 - 627