Recent advances in elaborate interface regulation of BiVO4 photoanode for photoelectrochemical water splitting

被引:10
|
作者
Wang, Liming [1 ]
Zhang, Yaping [1 ]
Li, Weibing [1 ]
Wang, Lei [1 ]
机构
[1] Qingdao Univ Sci & Technol, Coll Environm & Safety Engn, Key Lab Ecochem Engn, Int Sci & Technol Cooperat Base Ecochem Engn & Gre, Qingdao 266042, Peoples R China
来源
MATERIALS REPORTS: ENERGY | 2023年 / 3卷 / 04期
基金
中国国家自然科学基金;
关键词
Photoelectrochemical water splitting; BiVO; 4; photoanode; Charge recombination; Water oxidation reaction kinetics; Interface regulation strategy; CHARGE-CARRIER SEPARATION; OXIDATION ACTIVITY; OXYGEN VACANCIES; PERFORMANCE; COCATALYST; STABILITY;
D O I
10.1016/j.matre.2023.100232
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Bismuth vanadate (BiVO4) is an excellent photoanode material for photoelectrochemical (PEC) water splitting system, possessing high theoretical photoelectrocatalytic conversion efficiency. However, the actual PEC activity and stability of BiVO4 are faced with great challenges due to factors such as severe charge recombination and slow water oxidation kinetics at the interface. Therefore, various interface regulation strategies have been adopted to optimize the BiVO4 photoanode. This review provides an in-depth analysis for the mechanism of interface regulation strategies from the perspective of factors affecting the PEC performance of BiVO4 photoanodes. These interface regulation strategies improve the PEC performance of BiVO4 photoanode by promoting charge separation and transfer, accelerating interfacial reaction kinetics, and enhancing stability. The research on the interface regulation strategies of BiVO4 photoanode is of great significance for promoting the development of PEC water splitting technology. At the same time, it also has inspiration for providing new ideas and methods for designing and preparing efficient and stable catalytic materials.
引用
收藏
页数:16
相关论文
共 50 条
  • [11] Bifacial Modulation of Carrier Transport in BiVO4 Photoanode for Stable Photoelectrochemical Water Splitting via Interface Engineering
    Mane, Pratik
    Bagal, Indrajit, V
    Bae, Hyojung
    Burungale, Vishal
    Seong, Chaewon
    Ryu, Sang-Wan
    Ha, Jun-Seok
    ADVANCED SUSTAINABLE SYSTEMS, 2022, 6 (06)
  • [12] Photoelectrochemical water splitting coupled with degradation of organic pollutants enhanced by surface and interface engineering of BiVO4 photoanode
    Liu, Jingchao
    Li, Jianming
    Li, Yanfei
    Guo, Jian
    Xu, Si-Min
    Zhang, Ruikang
    Shao, Mingfei
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2020, 278
  • [13] Efficient photoelectrochemical water splitting of metal-porphyrin decorated on BiVO4 photoanode
    Sudi, M. Shire
    Zhao, Long
    Wang, Qi
    Dou, Yunqin
    Shen, Xiaoliang
    Wang, Aijian
    Zhu, Weihua
    APPLIED SURFACE SCIENCE, 2022, 606
  • [14] Enhanced performance of NiF2/BiVO4 photoanode for photoelectrochemical water splitting
    Zhao, Ziwei
    Chen, Kaiyi
    Huang, Jingwei
    Wang, Lei
    She, Houde
    Wang, Qizhao
    FRONTIERS IN ENERGY, 2021, 15 (03) : 760 - 771
  • [15] Embedding laser generated nanocrystals in BiVO4 photoanode for efficient photoelectrochemical water splitting
    Jie Jian
    Youxun Xu
    Xiaokun Yang
    Wei Liu
    Maosen Fu
    Huiwu Yu
    Fei Xu
    Fan Feng
    Lichao Jia
    Dennis Friedrich
    Roel van de Krol
    Hongqiang Wang
    Nature Communications, 10
  • [16] FeOOH/rGO/BiVO4 Photoanode for Highly Enhanced Photoelectrochemical Water Splitting Performance
    Zeng, Guihua
    Hou, Liqiong
    Zhang, Jialing
    Zhu, Jiaqian
    Yu, Xiang
    Fu, Xionghui
    Zhu, Yi
    Zhang, Yuanming
    CHEMCATCHEM, 2020, 12 (14) : 3769 - 3775
  • [17] Serial hole transfer layers for a BiVO4 photoanode with enhanced photoelectrochemical water splitting
    Li, Linsen
    Li, Jinhua
    Bai, Jing
    Zeng, Qingyi
    Xia, Ligang
    Zhang, Yan
    Chen, Shuai
    Xu, Qunjie
    Zhou, Baoxue
    NANOSCALE, 2018, 10 (38) : 18378 - 18386
  • [18] Enhanced performance of NiF2/BiVO4 photoanode for photoelectrochemical water splitting
    Ziwei Zhao
    Kaiyi Chen
    Jingwei Huang
    Lei Wang
    Houde She
    Qizhao Wang
    Frontiers in Energy, 2021, 15 : 760 - 771
  • [19] Embedding laser generated nanocrystals in BiVO4 photoanode for efficient photoelectrochemical water splitting
    Jian, Jie
    Xu, Youxun
    Yang, Xiaokun
    Liu, Wei
    Fu, Maosen
    Yu, Huiwu
    Xu, Fei
    Feng, Fan
    Jia, Lichao
    Friedrich, Dennis
    van de Krol, Roel
    Wang, Hongqiang
    NATURE COMMUNICATIONS, 2019, 10 (1)
  • [20] Photochemical and electrochemical co-regulation of the BiVO4 photoanode for water splitting
    Xu, Huimin
    Xu, Dongbo
    Deng, Shuang
    Li, Dan
    Jiang, Tianyao
    Li, Longhua
    Fan, Weiqiang
    Lei, Yong
    Shi, Weidong
    CHEMICAL COMMUNICATIONS, 2023, 59 (23) : 3435 - 3438