Brain structural plasticity in rats subjected to early binocular enucleation characterized by high resolution anatomical magnetic resonance imaging and diffusion tensor imaging

被引:1
|
作者
Wang, Xuxia [1 ]
Lin, Fuchun [1 ]
Kang, Yan [1 ]
Lei, Hao [1 ]
机构
[1] Chinese Acad Sci, Innovat Acad Precis Measurement Sci & Technol, Ctr Brain Sci, Natl Ctr Magnet Resonance Wuhan,State Key Lab Magn, Wuhan 430071, Peoples R China
基金
中国国家自然科学基金;
关键词
Blindness; Brain; Structural plasticity; MRI; Rats; LATERAL GENICULATE-NUCLEUS; VOXEL-BASED MORPHOMETRY; POSTNATAL-DEVELOPMENT; SUPERIOR COLLICULUS; NEONATAL ENUCLEATION; VISUAL PATHWAYS; OPTIC PATHWAY; PROJECTIONS; DEGENERATION; GRAY;
D O I
10.1016/j.mrl.2022.10.001
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Visual deprivation leads to structural neuroplasticity in the blind subjects, including gray matter (GM) and white matter (WM) atrophy and alterations in structural connectivity. The rat model of binocular enucleation (BE) is a frequently used animal model for studying brain plasticity induced by early blindness. Yet few neuroimaging studies have been performed on this model to investigate whether or not the BE rats have image phenotypes similar to or comparable to, those observed in the early blind subjects. The current study aimed to assess brain structural plasticity in BE rats using anatomical magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI). The results demonstrated that early BE at postnatal day 4 (P4) caused almost complete degeneration of optic nerve (ON) and optic chiasma (OCH), atrophy in a number of visual and non-visual structures, including optic tract (OT), dorsal lateral geniculate nucleus (DLG) and corpus callosum (CC). The BE rats also exhibited impairments of WM microstructural integrity in the OT, and reduction of structural connectivity between the normal-appearing visual cortex (VC) and somatosensory/motor cortices at 4 months of age, likely as manifestations of deafferentationinduced maldevelopment. The structural neuroplasticity in BE rats observable to structural MRI parallels largely with what has been reported in blind subjects, suggesting that longitudinal neuroimaging studies on animal models of sensory deprivation can provide insights into how the brain changes its wiring and function during development/adaption in response to the lack of sensory stimuli. (c) 2022 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This is an open access article under the CC BY-NC-ND license (http:// creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页码:14 / 21
页数:8
相关论文
共 50 条
  • [1] Imaging of Brain Tumors: Functional Magnetic Resonance Imaging and Diffusion Tensor Imaging
    Gupta, Ajay
    Shah, Akash
    Young, Robert J.
    Holodny, Andrei I.
    NEUROIMAGING CLINICS OF NORTH AMERICA, 2010, 20 (03) : 379 - +
  • [2] Cytoarchitecture of the mouse brain by high resolution diffusion magnetic resonance imaging
    Wang, Nian
    White, Leonard E.
    Qi, Yi
    Cofer, Gary
    Johnson, G. Allan
    NEUROIMAGE, 2020, 216
  • [3] High-resolution magnetic resonance imaging and diffusion tensor imaging of the porcine temporomandibular joint disc
    Benavides, E.
    Bilgen, M.
    Al-Hafez, B.
    Alrefae, T.
    Wang, Y.
    Spencer, P.
    DENTOMAXILLOFACIAL RADIOLOGY, 2009, 38 (03) : 148 - 155
  • [4] High-Resolution Magnetic Resonance Microscopy and Diffusion Tensor Imaging to Assess Brain Structural Abnormalities in the Murine Mucopolysaccharidosis VII Model
    Kumar, Manoj
    Nasrallah, Ilya M.
    Kim, Sungheon
    Ittyerah, Ranjit
    Pickup, Stephen
    Li, Joel
    Parente, Michael K.
    Wolfe, John H.
    Poptani, Harish
    JOURNAL OF NEUROPATHOLOGY AND EXPERIMENTAL NEUROLOGY, 2014, 73 (01) : 39 - 49
  • [5] Functional and diffusion tensor magnetic resonance imaging of the sheep brain
    Lee, Wonhye
    Lee, Stephanie D.
    Park, Michael Y.
    Foley, Lori
    Purcell-Estabrook, Erin
    Kim, Hyungmin
    Yoo, Seung-Schik
    BMC VETERINARY RESEARCH, 2015, 11
  • [6] Diffusion tensor magnetic resonance imaging of glial brain tumors
    Ferda, Jiri
    Kastner, Jan
    Mukensnabl, Petr
    Choc, Milan
    Horemuzova, Jana
    Ferdova, Eva
    Kreuzberg, Boris
    EUROPEAN JOURNAL OF RADIOLOGY, 2010, 74 (03) : 428 - 436
  • [7] Mapping Brain Anatomical Connectivity Using Diffusion Magnetic Resonance Imaging Structural connectivity of the human brain
    Li, Junning
    Shi, Yonggang
    Toga, Arthur W.
    IEEE SIGNAL PROCESSING MAGAZINE, 2016, 33 (03) : 36 - 51
  • [8] Anatomical analysis of an aye-aye brain (Daubentonia madagascariensis, Primates:Prosimii) combining histology, structural magnetic resonance imaging, and diffusion-tensor imaging
    Kaufman, JA
    Ahrens, ET
    Laidlaw, DH
    Zhang, S
    Allman, JM
    ANATOMICAL RECORD PART A-DISCOVERIES IN MOLECULAR CELLULAR AND EVOLUTIONARY BIOLOGY, 2005, 287A (01): : 1026 - 1037
  • [9] A review of magnetic resonance imaging and diffusion tensor imaging findings in mild traumatic brain injury
    M. E. Shenton
    H. M. Hamoda
    J. S. Schneiderman
    S. Bouix
    O. Pasternak
    Y. Rathi
    M.-A. Vu
    M. P. Purohit
    K. Helmer
    I. Koerte
    A. P. Lin
    C.-F. Westin
    R. Kikinis
    M. Kubicki
    R. A. Stern
    R. Zafonte
    Brain Imaging and Behavior, 2012, 6 : 137 - 192
  • [10] A review of magnetic resonance imaging and diffusion tensor imaging findings in mild traumatic brain injury
    Shenton, M. E.
    Hamoda, H. M.
    Schneiderman, J. S.
    Bouix, S.
    Pasternak, O.
    Rathi, Y.
    Vu, M. -A.
    Purohit, M. P.
    Helmer, K.
    Koerte, I.
    Lin, A. P.
    Westin, C. -F.
    Kikinis, R.
    Kubicki, M.
    Stern, R. A.
    Zafonte, R.
    BRAIN IMAGING AND BEHAVIOR, 2012, 6 (02) : 137 - 192