Machine learning and radiomics analysis by computed tomography in colorectal liver metastases patients for RAS mutational status prediction

被引:5
|
作者
Granata, Vincenza [1 ]
Fusco, Roberta [2 ]
Setola, Sergio Venanzio [1 ]
Brunese, Maria Chiara [3 ]
Di Mauro, Annabella [4 ]
Avallone, Antonio [5 ]
Ottaiano, Alessandro [5 ]
Normanno, Nicola [6 ]
Petrillo, Antonella [1 ]
Izzo, Francesco [7 ]
机构
[1] Ist Nazl Tumori IRCCS Fdn Pascale IRCCS Napoli, Div Radiol, Naples, Italy
[2] Igea SpA, Med Oncol Div, Naples, Italy
[3] Univ Molise, Dept Med & Hlth Sci V Tiberio, I-86100 Campobasso, Italy
[4] IRCCS Fdn G Pascale, Ist Nazl Tumori, Pathol Anat & Cytopathol Unit, I-80131 Naples, Italy
[5] IRCCS Fdn G Pascale, Ist Nazl Tumori, Clin Sperimental Abdominal Oncol Unit, I-80131 Naples, Italy
[6] IRCCS Ist Romagnolo Studio Tumori IRST Dino Amador, I-47014 Mendola, Italy
[7] Ist Nazl Tumori IRCCS Fdn Pascale IRCCS Napoli, Div Epatobiliary Surg Oncol, I-80131 Naples, Italy
来源
RADIOLOGIA MEDICA | 2024年 / 129卷 / 07期
关键词
Radiomic analysis; Machine learning; Liver metastases; Computed tomography; RAS mutational status; HETEROGENEITY;
D O I
10.1007/s11547-024-01828-5
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose To assess the efficacy of machine learning and radiomics analysis by computed tomography (CT) in presurgical setting, to predict RAS mutational status in colorectal liver metastases. Methods Patient selection in a retrospective study was carried out from January 2018 to May 2021 considering the following inclusion criteria: patients subjected to surgical resection for liver metastases; proven pathological liver metastases; patients subjected to enhanced CT examination in the presurgical setting with a good quality of images; and RAS assessment as standard reference. A total of 851 radiomics features were extracted using the PyRadiomics Python package from the Slicer 3D image computing platform after slice-by-slice segmentation on CT portal phase by two expert radiologists of each individual liver metastasis performed first independently by the individual reader and then in consensus. Balancing technique was performed, and inter- and intraclass correlation coefficients were calculated to assess the between-observer and within-observer reproducibility of features. Receiver operating characteristics (ROC) analysis with the calculation of area under the ROC curve (AUC), sensitivity (SENS), specificity (SPEC), positive predictive value (PPV), negative predictive value (NPV) and accuracy (ACC) were assessed for each parameter. Linear and non-logistic regression model (LRM and NLRM) and different machine learning-based classifiers were considered. Moreover, features selection was performed before and after a normalized procedure using two different methods (3-sigma and z-score). Results Seventy-seven liver metastases in 28 patients with a mean age of 60 years (range 40-80 years) were analyzed. The best predictors, at univariate analysis for both normalized procedures, were original_shape_Maximum2DDiameter and wavelet_HLL_glcm_InverseVariance that reached an accuracy of 80%, an AUC >= 0.75, a sensitivity >= 80% and a specificity >= 70% (p value < < 0.01). However, a multivariate analysis significantly increased the accuracy in RAS prediction when a linear regression model (LRM) was used. The best performance was obtained using a LRM combining linearly 12 robust features after a z-score normalization procedure: AUC of 0.953, accuracy 98%, sensitivity 96%, specificity of 100%, PPV 100% and NPV 96% (p value < < 0.01). No statistically significant increase was obtained considering the tested machine learning both without normalization and with normalization methods. Conclusions Normalized approach in CT radiomics analysis allows to predict RAS mutational status in colorectal liver metastases patients.
引用
收藏
页码:957 / 966
页数:10
相关论文
共 50 条
  • [1] Radiomics and machine learning analysis by computed tomography and magnetic resonance imaging in colorectal liver metastases prognostic assessment
    Granata, Vincenza
    Fusco, Roberta
    De Muzio, Federica
    Brunese, Maria Chiara
    Setola, Sergio Venanzio
    Ottaiano, Alessandro
    Cardone, Claudia
    Avallone, Antonio
    Patrone, Renato
    Pradella, Silvia
    Miele, Vittorio
    Tatangelo, Fabiana
    Cutolo, Carmen
    Maggialetti, Nicola
    Caruso, Damiano
    Izzo, Francesco
    Petrillo, Antonella
    RADIOLOGIA MEDICA, 2023, 128 (11): : 1310 - 1332
  • [2] Radiomics and machine learning analysis by computed tomography and magnetic resonance imaging in colorectal liver metastases prognostic assessment
    Vincenza Granata
    Roberta Fusco
    Federica De Muzio
    Maria Chiara Brunese
    Sergio Venanzio Setola
    Alessandro Ottaiano
    Claudia Cardone
    Antonio Avallone
    Renato Patrone
    Silvia Pradella
    Vittorio Miele
    Fabiana Tatangelo
    Carmen Cutolo
    Nicola Maggialetti
    Damiano Caruso
    Francesco Izzo
    Antonella Petrillo
    La radiologia medica, 2023, 128 (11) : 1310 - 1332
  • [3] Machine learning-based analysis of CT radiomics model for prediction of colorectal metachronous liver metastases
    Taghavi, Marjaneh
    Trebeschi, Stefano
    Simoes, Rita
    Meek, David B.
    Beckers, Rianne C. J.
    Lambregts, Doenja M. J.
    Verhoef, Cornelis
    Houwers, Janneke B.
    van der Heide, Uulke A.
    Beets-Tan, Regina G. H.
    Maas, Monique
    ABDOMINAL RADIOLOGY, 2021, 46 (01) : 249 - 256
  • [4] Machine learning-based analysis of CT radiomics model for prediction of colorectal metachronous liver metastases
    Marjaneh Taghavi
    Stefano Trebeschi
    Rita Simões
    David B. Meek
    Rianne C. J. Beckers
    Doenja M. J. Lambregts
    Cornelis Verhoef
    Janneke B. Houwers
    Uulke A. van der Heide
    Regina G. H. Beets-Tan
    Monique Maas
    Abdominal Radiology, 2021, 46 : 249 - 256
  • [5] Machine Learning and Radiomics Analysis for Tumor Budding Prediction in Colorectal Liver Metastases Magnetic Resonance Imaging Assessment
    Granata, Vincenza
    Fusco, Roberta
    Brunese, Maria Chiara
    Ferrara, Gerardo
    Tatangelo, Fabiana
    Ottaiano, Alessandro
    Avallone, Antonio
    Miele, Vittorio
    Normanno, Nicola
    Izzo, Francesco
    Petrillo, Antonella
    DIAGNOSTICS, 2024, 14 (02)
  • [6] Computed Tomography-Based Radiomics with Machine Learning Outperforms Radiologist Assessment in Estimating Colorectal Liver Metastases Pathologic Response After Chemotherapy
    Karagkounis, Georgios
    Horvat, Natally
    Danilova, Sofia
    Chhabra, Salini
    Narayan, Raja R.
    Barekzai, Ahmad B.
    Kleshchelski, Adam
    Joanne, Chou
    Gonen, Mithat
    Balachandran, Vinod
    Soares, Kevin C.
    Wei, Alice C.
    Kingham, T. Peter
    Jarnagin, William R.
    Shia, Jinru
    Chakraborty, Jayasree
    D'Angelica, Michael I.
    ANNALS OF SURGICAL ONCOLOGY, 2024,
  • [7] Machine learning-based radiomics analysis in predicting RAS mutational status using magnetic resonance imaging
    Vincenza Granata
    Roberta Fusco
    Maria Chiara Brunese
    Annabella Di Mauro
    Antonio Avallone
    Alessandro Ottaiano
    Francesco Izzo
    Nicola Normanno
    Antonella Petrillo
    La radiologia medica, 2024, 129 : 420 - 428
  • [8] Machine learning-based radiomics analysis in predicting RAS mutational status using magnetic resonance imaging
    Granata, Vincenza
    Fusco, Roberta
    Brunese, Maria Chiara
    Di Mauro, Annabella
    Avallone, Antonio
    Ottaiano, Alessandro
    Izzo, Francesco
    Normanno, Nicola
    Petrillo, Antonella
    RADIOLOGIA MEDICA, 2024, 129 (03): : 420 - 428
  • [9] Identifying Genetic Mutation Status in Patients with Colorectal Cancer Liver Metastases Using Radiomics-Based Machine-Learning Models
    Wesdorp, Nina
    Zeeuw, Michiel
    van der Meulen, Delanie
    van't Erve, Iris
    Bodalal, Zuhir
    Roor, Joran
    van Waesberghe, Jan Hein
    Moos, Shira
    van den Bergh, Janneke
    Nota, Irene
    van Dieren, Susan
    Stoker, Jaap
    Meijer, Gerrit
    Swijnenburg, Rutger-Jan
    Punt, Cornelis
    Huiskens, Joost
    Beets-Tan, Regina
    Fijneman, Remond
    Marquering, Henk
    Kazemier, Geert
    CANCERS, 2023, 15 (23)
  • [10] Radiomics and machine learning analysis based on magnetic resonance imaging in the assessment of liver mucinous colorectal metastases
    Granata, Vincenza
    Fusco, Roberta
    De Muzio, Federica
    Cutolo, Carmen
    Setola, Sergio Venanzio
    Dell'Aversana, Federica
    Grassi, Francesca
    Belli, Andrea
    Silvestro, Lucrezia
    Ottaiano, Alessandro
    Nasti, Guglielmo
    Avallone, Antonio
    Flammia, Federica
    Miele, Vittorio
    Tatangelo, Fabiana
    Izzo, Francesco
    Petrillo, Antonella
    RADIOLOGIA MEDICA, 2022, 127 (07): : 763 - 772