EVALUATING MONOCULAR DEPTH ESTIMATION METHODS

被引:0
|
作者
Padkan, N. [1 ,2 ]
Trybala, P. [1 ]
Battisti, R. [1 ]
Remondino, F. [1 ]
Bergeret, C. [1 ,3 ]
机构
[1] Bruno Kessler Fdn FBK, 3D Opt Metrol 3DOM Unit, Trento, Italy
[2] Univ Udine, Dept Math Comp Sci & Phys, Udine, Italy
[3] ENSG, Paris, France
来源
2ND GEOBENCH WORKSHOP ON EVALUATION AND BENCHMARKING OF SENSORS, SYSTEMS AND GEOSPATIAL DATA IN PHOTOGRAMMETRY AND REMOTE SENSING, VOL. 48-1 | 2023年
关键词
Monocular Depth; Photogrammetry; Deep Learning; 3D; benchmark;
D O I
10.5194/isprs-archives-XLVIII-1-W3-2023-137-2023
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Depth estimation from monocular images has become a prominent focus in photogrammetry and computer vision research. Monocular Depth Estimation (MDE), which involves determining depth from a single RGB image, offers numerous advantages, including applications in simultaneous localization and mapping (SLAM), scene comprehension, 3D modeling, robotics, and autonomous driving. Depth information retrieval becomes especially crucial in situations where other sources like stereo images, optical flow, or point clouds are not available. In contrast to traditional stereo or multi-view methods, MDE techniques require fewer computational resources and smaller datasets. This research work presents a comprehensive analysis and evaluation of some state-of-the-art MDE methods, considering their ability to infer depth information in terrestrial images. The evaluation includes quantitative assessments using ground truth data, including 3D analyses and inference time. [GRAPHICS] .
引用
收藏
页码:137 / 144
页数:8
相关论文
共 50 条
  • [31] DTTNet: Depth Transverse Transformer Network for Monocular Depth Estimation
    Kamath, Shreyas K. M.
    Rajeev, Srijith
    Panetta, Karen
    Agaian, Sos S.
    MULTIMODAL IMAGE EXPLOITATION AND LEARNING 2022, 2022, 12100
  • [32] Depth-Relative Self Attention for Monocular Depth Estimation
    Shim, Kyuhong
    Kim, Jiyoung
    Lee, Gusang
    Shim, Byonghyo
    PROCEEDINGS OF THE THIRTY-SECOND INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2023, 2023, : 1396 - 1404
  • [33] EdgeConv with Attention Module for Monocular Depth Estimation
    Lee, Minhyeok
    Hwang, Sangwon
    Park, Chaewon
    Lee, Sangyoun
    2022 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2022), 2022, : 2364 - 2373
  • [34] Depth Estimation from a Monocular Outdoor Image
    Kuo, Tien-Ying
    Lo, Yi-Chung
    Lai, Yun-Yang
    IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS (ICCE 2011), 2011, : 161 - 162
  • [35] Depth Estimation from a Monocular View of the Outdoors
    Kuo, Tien-Ying
    Lo, Yi-Chung
    IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, 2011, 57 (02) : 817 - 822
  • [36] Adaptive confidence thresholding for monocular depth estimation
    Choi, Hyesong
    Lee, Hunsang
    Kim, Sunkyung
    Kim, Sunok
    Kim, Seungryong
    Sohn, Kwanghoon
    Min, Dongbo
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 12788 - 12798
  • [37] Hierarchical Normalization for Robust Monocular Depth Estimation
    Zhang, Chi
    Yin, Wei
    Wang, Zhibin
    Yu, Gang
    Fu, Bin
    Shen, Chunhua
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [38] Uncertainty Estimation for Efficient Monocular Depth Perception
    Du, Hao
    Cheng, Guoan
    Matsune, Ai
    Zhu, Qiang
    Zhan, Shu
    2022 ASIA CONFERENCE ON ALGORITHMS, COMPUTING AND MACHINE LEARNING (CACML 2022), 2022, : 804 - 808
  • [39] Monocular Depth Estimation for UAV Obstacle Avoidance
    Zhang, Zhenghong
    Xiong, Mingkang
    Xiong, Huilin
    PROCEEDINGS OF 2019 4TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING AND INTERNET OF THINGS (CCIOT 2019), 2019, : 43 - 47
  • [40] NEREON - An Underwater Dataset for Monocular Depth Estimation
    Dionisio, Joao M. M.
    Pereira, Pedro N. A. A. S.
    Leite, Pedro N.
    Neves, Francisco S.
    Tavares, Joao Manuel R. S.
    Pinto, Andry M.
    OCEANS 2023 - LIMERICK, 2023,