Flexible high-density microelectrode arrays for closed-loop brain-machine interfaces: a review

被引:1
作者
Liu, Xiang [1 ,2 ]
Gong, Yan [2 ,3 ]
Jiang, Zebin [2 ,3 ]
Stevens, Trevor [3 ]
Li, Wen [1 ,2 ,3 ,4 ]
机构
[1] Michigan State Univ, Dept Physiol, Neurosci Program, E Lansing, MI 48824 USA
[2] Inst Quantitat Hlth Sci & Engn IQ, E Lansing, MI 48824 USA
[3] Michigan State Univ, Dept Elect & Comp Engn, E Lansing, MI USA
[4] Michigan State Univ, Dept Biomed Engn, E Lansing, MI USA
关键词
microelectrode array; closed-loop; brain-machine interfaces; flexibility; high density; ELECTRICAL-STIMULATION; NERVE STIMULATION; PEDOTPSS; ELECTRODE; TISSUE; BIOCOMPATIBILITY; ENHANCEMENT;
D O I
10.3389/fnins.2024.1348434
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Flexible high-density microelectrode arrays (HDMEAs) are emerging as a key component in closed-loop brain-machine interfaces (BMIs), providing high-resolution functionality for recording, stimulation, or both. The flexibility of these arrays provides advantages over rigid ones, such as reduced mismatch between interface and tissue, resilience to micromotion, and sustained long-term performance. This review summarizes the recent developments and applications of flexible HDMEAs in closed-loop BMI systems. It delves into the various challenges encountered in the development of ideal flexible HDMEAs for closed-loop BMI systems and highlights the latest methodologies and breakthroughs to address these challenges. These insights could be instrumental in guiding the creation of future generations of flexible HDMEAs, specifically tailored for use in closed-loop BMIs. The review thoroughly explores both the current state and prospects of these advanced arrays, emphasizing their potential in enhancing BMI technology.
引用
收藏
页数:15
相关论文
共 145 条
[61]   Technology Roadmap for Flexible Sensors [J].
Luo, Yifei ;
Abidian, Mohammad Reza ;
Ahn, Jong-Hyun ;
Akinwande, Deji ;
Andrews, Anne M. ;
Antonietti, Markus ;
Bao, Zhenan ;
Berggren, Magnus ;
Berkey, Christopher A. ;
Bettinger, Christopher John ;
Chen, Jun ;
Chen, Peng ;
Cheng, Wenlong ;
Cheng, Xu ;
Choi, Seon-Jin ;
Chortos, Alex ;
Dagdeviren, Canan ;
Dauskardt, Reinhold H. ;
Di, Chong-an ;
Dickey, Michael D. ;
Duan, Xiangfeng ;
Facchetti, Antonio ;
Fan, Zhiyong ;
Fang, Yin ;
Feng, Jianyou ;
Feng, Xue ;
Gao, Huajian ;
Gao, Wei ;
Gong, Xiwen ;
Guo, Chuan Fei ;
Guo, Xiaojun ;
Hartel, Martin C. ;
He, Zihan ;
Ho, John S. ;
Hu, Youfan ;
Huang, Qiyao ;
Huang, Yu ;
Huo, Fengwei ;
Hussain, Muhammad M. ;
Javey, Ali ;
Jeong, Unyong ;
Jiang, Chen ;
Jiang, Xingyu ;
Kang, Jiheong ;
Karnaushenko, Daniil ;
Khademhosseini, Ali ;
Kim, Dae-Hyeong ;
Kim, Il-Doo ;
Kireev, Dmitry ;
Kong, Lingxuan .
ACS NANO, 2023, 17 (06) :5211-5295
[62]   Cell viability and cytotoxicity of inkjet-printed flexible organic electrodes on parylene C [J].
Mandelli, Jaqueline S. ;
Koepp, Janice ;
Hama, Adel ;
Sanaur, Sebastien ;
Rae, Giles A. ;
Rambo, Carlos R. .
BIOMEDICAL MICRODEVICES, 2021, 23 (01)
[63]   A mesh microelectrode array for non-invasive electrophysiology within neural organoids [J].
McDonald, Matthew ;
Sebinger, David ;
Brauns, Lisa ;
Gonzalez-Cano, Laura ;
Menuchin-Lasowski, Yotam ;
Mierzejewski, Michael ;
Psathaki, Olympia-Ekaterini ;
Stumpf, Angelika ;
Wickham, Jenny ;
Rauen, Thomas ;
Scholer, Hans ;
Jones, Peter D. .
BIOSENSORS & BIOELECTRONICS, 2023, 228
[64]  
McNamara M, 2021, I IEEE EMBS C NEUR E, P544, DOI [10.1109/NER49283.2021.9441164, 10.1109/ner49283.2021.9441164]
[65]   Impedance characterization of microarray recording electrodes in vitro [J].
Merrill, DR ;
Tresco, PA .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2005, 52 (11) :1960-1965
[66]   High-Density Electrical Recording and Impedance Imaging With a Multi-Modal CMOS Multi-Electrode Array Chip [J].
Miccoli, Beatrice ;
Lopez, Carolina Mora ;
Goikoetxea, Erkuden ;
Putzeys, Jan ;
Sekeri, Makrina ;
Krylychkina, Olga ;
Chang, Shuo-Wen ;
Firrincieli, Andrea ;
Andrei, Alexandru ;
Reumers, Veerle ;
Braeken, Dries .
FRONTIERS IN NEUROSCIENCE, 2019, 13
[67]   Highly Precise, Continuous, Long-Term Monitoring of Skin Electrical Resistance by Nanomesh Electrodes [J].
Miyamoto, Akihito ;
Kawasaki, Hiroshi ;
Lee, Sunghoon ;
Yokota, Tomoyuki ;
Amagai, Masayuki ;
Someya, Takao .
ADVANCED HEALTHCARE MATERIALS, 2022, 11 (10)
[68]   Microelectrode clusters enable therapeutic deep brain stimulation without noticeable side-effects in a rodent model of Parkinson's disease [J].
Mohammed, Mohsin ;
Ivica, Nedjeljka ;
Bjartmarz, Hjalmar ;
Thorbergsson, Palmi Thor ;
Pettersson, Lina M. E. ;
Thelin, Jonas ;
Schouenborg, Jens .
JOURNAL OF NEUROSCIENCE METHODS, 2022, 365
[69]   An Integrated Brain-Machine Interface Platform With Thousands of Channels [J].
Musk, Elon .
JOURNAL OF MEDICAL INTERNET RESEARCH, 2019, 21 (10)
[70]   SCALING LIMITATIONS OF SILICON MULTICHANNEL RECORDING PROBES [J].
NAJAFI, K ;
JI, J ;
WISE, KD .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 1990, 37 (01) :1-11