New Penalized Criteria for Smooth Non-Negative Tensor Factorization With Missing Entries

被引:0
作者
Durand, Amaury [1 ,2 ]
Roueff, Francois [1 ]
Jicquel, Jean-Marc [2 ]
Paul, Nicolas [3 ]
机构
[1] Inst Polytech Paris, LTCI, Telecom Paris, F-91120 Palaiseau, France
[2] Lab Renardieres, EDF R&D, TREE, E36, F-77818 Ecuelles, Moret Sur Loing, France
[3] PRISME, EDF R&D, F-78400 Chatou, France
关键词
Tensors; Signal processing algorithms; Optimization; Vectors; Convergence; Splines (mathematics); Research and development; Non-negative tensor decomposition; missing values; tensor completion; smoothness; PARAFAC; CP decomposition; MATRIX FACTORIZATION; PARAFAC; DECOMPOSITION; RANK;
D O I
10.1109/TSP.2024.3392357
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Tensor factorization models are widely used in many applied fields such as chemometrics, psychometrics, computer vision or communication networks. Real life data collection is often subject to errors, resulting in missing data. Here we focus in understanding how this issue should be dealt with for non-negative tensor factorization. We investigate several criteria used for non-negative tensor factorization in the case where some entries are missing. In particular we show how smoothness penalties can compensate the presence of missing values in order to ensure the existence of an optimum. This leads us to propose new criteria with efficient numerical optimization algorithms. Numerical experiments are conducted to support our claims.
引用
收藏
页码:2233 / 2243
页数:11
相关论文
共 35 条
[21]   Image Completion with Smooth Nonnegative Matrix Factorization [J].
Sadowski, Tomasz ;
Zdunek, Rafal .
ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING (ICAISC 2018), PT II, 2018, 10842 :62-72
[22]   Tensor Decomposition for Signal Processing and Machine Learning [J].
Sidiropoulos, Nicholas D. ;
De Lathauwer, Lieven ;
Fu, Xiao ;
Huang, Kejun ;
Papalexakis, Evangelos E. ;
Faloutsos, Christos .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2017, 65 (13) :3551-3582
[23]   Tensor Completion Algorithms in Big Data Analytics [J].
Song, Qingquan ;
Ge, Hancheng ;
Caverlee, James ;
Hu, Xia .
ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2019, 13 (01)
[24]  
Tikhonov A.N., 1977, Solutions of Ill-Posed Problems
[25]   Three-way component analysis with smoothness constraints [J].
Timmerman, ME ;
Kiers, HAL .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2002, 40 (03) :447-470
[26]   PARAFAC and missing values [J].
Tomasi, G ;
Bro, R .
CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2005, 75 (02) :163-180
[27]  
Tong T, 2022, PR MACH LEARN RES, V151
[28]  
Vapnik V. N., 1998, Statistical Learning Theory
[29]  
Xiong L, 2010, P SIAM INT C DAT MIN, P211, DOI DOI 10.1137/1.9781611972801.19
[30]   Smooth PARAFAC Decomposition for Tensor Completion [J].
Yokota, Tatsuya ;
Zhao, Qibin ;
Cichocki, Andrzej .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2016, 64 (20) :5423-5436