Quantum Semantic Communications for Resource-Efficient Quantum Networking

被引:7
作者
Chehimi, Mahdi [1 ]
Chaccour, Christina [2 ]
Thomas, Christo Kurisummoottil [1 ]
Saad, Walid [1 ,3 ]
机构
[1] Virginia Tech, Bradley Dept Elect & Comp Engn, Arlington, VA 22203 USA
[2] Ericsson Inc, Plano, TX 75024 USA
[3] Kyung Hee Univ, Dept Comp Sci & Engn, Yongin 17104, Gyeonggido, South Korea
关键词
Semantics; Quantum state; Quantum entanglement; Quantum communication; Quantum mechanics; Photonics; Hilbert space; Quantum networks; semantic communications; q-means clustering; semantic representation; fidelity; ENTANGLEMENT;
D O I
10.1109/LCOMM.2024.3361852
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
Quantum communication networks (QCNs) utilize quantum mechanics for secure information transmission, but the reliance on fragile and expensive photonic quantum resources renders QCN resource optimization challenging. Unlike prior QCN works that relied on blindly compressing direct quantum embeddings of classical data, this letter proposes a novel quantum semantic communications (QSC) framework exploiting advancements in quantum machine learning and quantum semantic representations to extracts and embed only the relevant information from classical data into minimal high-dimensional quantum states that are accurately communicated over quantum channels with quantum communication and semantic fidelity measures. Simulation results indicate that, compared to semantic-agnostic QCN schemes, the proposed framework achieves approximately 50-75% reduction in quantum communication resources needed, while achieving a higher quantum semantic fidelity.
引用
收藏
页码:803 / 807
页数:5
相关论文
共 24 条
[11]  
Chen-Rui Fan, 2021, Quantum Engineering, V3, DOI 10.1002/que2.67
[12]   High-Dimensional Quantum Communication: Benefits, Progress, and Future Challenges [J].
Cozzolino, Daniele ;
Da Lio, Beatrice ;
Bacco, Davide ;
Oxenlowe, Leif Katsuo .
ADVANCED QUANTUM TECHNOLOGIES, 2019, 2 (12)
[13]  
Kerenidis I, 2019, ADV NEUR IN, V32
[14]   The capacity of the quantum depolarizing channel [J].
King, C .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2003, 49 (01) :221-229
[15]   A Survey on 5G Usage Scenarios and Traffic Models [J].
Navarro-Ortiz, Jorge ;
Romero-Diaz, Pablo ;
Sendra, Sandra ;
Ameigeiras, Pablo ;
Ramos-Munoz, Juan J. ;
Lopez-Soler, Juan M. .
IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, 2020, 22 (02) :905-929
[16]   Entanglement purification for quantum communication [J].
Pan, JW ;
Simon, C ;
Brukner, C ;
Zeilinger, A .
NATURE, 2001, 410 (6832) :1067-1070
[17]   Quantum Data Compression of a Qubit Ensemble [J].
Rozema, Lee A. ;
Mahler, Dylan H. ;
Hayat, Alex ;
Turner, Peter S. ;
Steinberg, Aephraim M. .
PHYSICAL REVIEW LETTERS, 2014, 113 (16)
[18]   Quantum Machine Learning in Feature Hilbert Spaces [J].
Schuld, Maria ;
Killoran, Nathan .
PHYSICAL REVIEW LETTERS, 2019, 122 (04)
[19]   The Role of Fidelity in Goal-Oriented Semantic Communication: A Rate Distortion Approach [J].
Stavrou, Photios A. A. ;
Kountouris, Marios .
IEEE TRANSACTIONS ON COMMUNICATIONS, 2023, 71 (07) :3918-3931
[20]  
Tetlow P, 2022, Arxiv, DOI arXiv:2201.05478