Simulation of acquisition shifts in T2 weighted fluid-attenuated inversion recovery magnetic resonance images to stress test artificial intelligence segmentation networks

被引:0
作者
Posselt, Christiane [1 ]
Avci, Mehmet Yigit [2 ]
Yigitsoy, Mehmet [2 ]
Schuenke, Patrick [3 ,4 ]
Kolbitsch, Christoph [3 ,4 ]
Schaeffter, Tobias [3 ,4 ,5 ]
Remmele, Stefanie [1 ]
机构
[1] Univ Appl Sci, Fac Elect & Ind Engn, Landshut, Germany
[2] Deepc GmbH, Munich, Germany
[3] Phys Tech Bundesanstalt PTB, Braunschweig, Germany
[4] Phys Tech Bundesanstalt PTB, Berlin, Germany
[5] Tech Univ Berlin, Dept Med Engn, Berlin, Germany
关键词
magnetic resonance image simulation; artificial intelligence validation; magnetic resonance imaging sequence; multiple sclerosis lesion segmentation; T2w fluid attenuated inversion recovery; WHITE-MATTER; MRI; RELAXATION; SEQUENCES; ARTIFACTS; INCREASE; FLAIR;
D O I
10.1117/1.JMI.11.2.024013
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: To provide a simulation framework for routine neuroimaging test data, which allows for "stress testing" of deep segmentation networks against acquisition shifts that commonly occur in clinical practice for T2 weighted (T2w) fluid-attenuated inversion recovery magnetic resonance imaging protocols. Approach: The approach simulates "acquisition shift derivatives" of MR images based on MR signal equations. Experiments comprise the validation of the simulated images by real MR scans and example stress tests on state-of-the-art multiple sclerosis lesion segmentation networks to explore a generic model function to describe the F1 score in dependence of the contrast-affecting sequence parameters echo time (TE) and inversion time (TI). Results: The differences between real and simulated images range up to 19% in gray and white matter for extreme parameter settings. For the segmentation networks under test, the F1 score dependency on TE and TI can be well described by quadratic model functions (R-2 > 0.9). The coefficients of the model functions indicate that changes of TE have more influence on the model performance than TI. Conclusions: We show that these deviations are in the range of values as may be caused by erroneous or individual differences in relaxation times as described by literature. The coefficients of the F1 model function allow for a quantitative comparison of the influences of TE and TI. Limitations arise mainly from tissues with a low baseline signal (like cerebrospinal fluid) and when the protocol contains contrast-affecting measures that cannot be modeled due to missing information in the DICOM header. (c) The Authors. Published by SPIE under a Creative Commons Attribution 4.0 International License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.
引用
收藏
页数:17
相关论文
共 56 条
[1]  
[Anonymous], 2022, ACR List of FDA cleared AI medical products
[2]   CLEVR-XAI: A benchmark dataset for the ground truth evaluation of neural network explanations [J].
Arras, Leila ;
Osman, Ahmed ;
Samek, Wojciech .
INFORMATION FUSION, 2022, 81 :14-40
[3]  
Billot B., 2020, Lect. Notes Comput. Sci., P177, DOI [DOI 10.1007/978-3-030-59728-3_18, 10.1007/978-3- 030-59728-3_18]
[4]   SynthSeg: Segmentation of brain MRI scans of any contrast and resolution without retraining [J].
Billot, Benjamin ;
Greve, Douglas N. ;
Puonti, Oula ;
Thielscher, Axel ;
Van Leemput, Koen ;
Fischl, Bruce ;
Dalca, Adrian V. ;
Iglesias, Juan Eugenio .
MEDICAL IMAGE ANALYSIS, 2023, 86
[5]   Effects of refocusing flip angle modulation and view ordering in 3D fast spin echo [J].
Busse, Reed F. ;
Brau, Anja C. S. ;
Vu, Anthony ;
Michelich, Charles R. ;
Bayram, Ersin ;
Kijowski, Richard ;
Reeder, Scott B. ;
Rowley, Howard A. .
MAGNETIC RESONANCE IN MEDICINE, 2008, 60 (03) :640-649
[6]   Fast spin echo sequences with very long echo trains:: Design of variable refocusing flip angle schedules and generation of clinical T2 contrast [J].
Busse, RF ;
Hariharan, H ;
Vu, A ;
Brittain, JH .
MAGNETIC RESONANCE IN MEDICINE, 2006, 55 (05) :1030-1037
[7]   Longitudinal multiple sclerosis lesion segmentation: Resource and challenge [J].
Carass, Aaron ;
Roy, Snehashis ;
Jog, Amod ;
Cuzzocreo, Jennifer L. ;
Magrath, Elizabeth ;
Gherman, Adrian ;
Button, Julia ;
Nguyen, James ;
Prados, Ferran ;
Sudre, Carole H. ;
Cardoso, Manuel Jorge ;
Cawley, Niamh ;
Ciccarelli, Olga ;
Wheeler-Kingshott, Claudia A. M. ;
Ourselin, Sebastien ;
Catanese, Laurence ;
Deshpande, Hrishikesh ;
Maurel, Pierre ;
Commowick, Olivier ;
Barillot, Christian ;
Tomas-Fernandez, Xavier ;
Warfield, Simon K. ;
Vaidya, Suthirth ;
Chunduru, Abhijith ;
Muthuganapathy, Ramanathan ;
Krishnamurthi, Ganapathy ;
Jesson, Andrew ;
Arbel, Tal ;
Maier, Oskar ;
Handeles, Heinz ;
Iheme, Leonardo O. ;
Unay, Devrim ;
Jain, Saurabh ;
Sima, Diana M. ;
Smeets, Dirk ;
Ghafoorian, Mohsen ;
Platel, Bram ;
Birenbaum, Ariel ;
Greenspan, Hayit ;
Bazin, Pierre-Louis ;
Calabresi, Peter A. ;
Crainiceanu, Ciprian M. ;
Ellingsen, Lotta M. ;
Reich, Daniel S. ;
Prince, Jerry L. ;
Pham, Dzung L. .
NEUROIMAGE, 2017, 148 :77-102
[8]   Causality matters in medical imaging [J].
Castro, Daniel C. ;
Walker, Ian ;
Glocker, Ben .
NATURE COMMUNICATIONS, 2020, 11 (01)
[9]  
Commowick O, 2021, MICCAI 2021 24 INT C, P126
[10]   Automated Protocoling for MRI Exams-Challenges and Solutions [J].
Denck, Jonas ;
Haas, Oliver ;
Guehring, Jens ;
Maier, Andreas ;
Rothgang, Eva .
JOURNAL OF DIGITAL IMAGING, 2022, 35 (05) :1293-1302