The Jacobi-Sobolev, Laguerre-Sobolev, and Gegenbauer-Sobolev differential equations and their interrelations

被引:0
|
作者
Markett, Clemens [1 ,2 ]
机构
[1] Rhein Westfal TH Aachen, Lehrstuhl Math, Aachen, Germany
[2] Rhein Westfal TH Aachen, Lehrstuhl furMathemat, D-52056 Aachen, Germany
关键词
Sobolev orthogonal polynomials; symmetric differential operator; Jacobi-Sobolev differential equation; Laguerre-Sobolev differential equation; Gegenbauer-Sobolev differential equation; ORTHOGONAL POLYNOMIAL SOLUTIONS; OPERATORS; REPRESENTATION;
D O I
10.1080/10652469.2024.2343899
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Recently, the author determined the higher-order differential operator having the Jacobi-Sobolev polynomials as its eigenfunctions for certain eigenvalues. These polynomials form an orthogonal system with respect to an inner product equipped with the Jacobi measure on the interval [-1, 1] with parameters alpha is an element of N-0, beta > - 1 and two point masses N, S > 0 at the right end point of the interval involving functions and their first derivatives. The first purpose of the present paper is to reveal how the Jacobi-Sobolev equation reduces to the differential equation satisfied by the Laguerre-Sobolev polynomials on the positive half line via a confluent limiting process as beta -> infinity. Secondly, we explicitly establish the differential equation for the symmetric Gegenbauer-Sobolev polynomials by employing a quadratic transformation of the argument. Each of the three differential operators involved is of order 4 alpha + 10 and symmetric with respect to the corresponding Sobolev inner product.
引用
收藏
页码:437 / 456
页数:20
相关论文
共 50 条
  • [1] Differential equations for discrete Laguerre-Sobolev orthogonal polynomials
    Duran, Antonio J.
    de la Iglesia, Manuel D.
    JOURNAL OF APPROXIMATION THEORY, 2015, 195 : 70 - 88
  • [2] Differential equations for discrete Jacobi-Sobolev orthogonal polynomials
    Duran, Antonio J.
    de la Iglesia, Manuel D.
    JOURNAL OF SPECTRAL THEORY, 2018, 8 (01) : 191 - 234
  • [3] On the differential equation for the Laguerre-Sobolev polynomials
    Markett, Clemens
    JOURNAL OF APPROXIMATION THEORY, 2019, 247 : 48 - 67
  • [4] Fourier Series of Gegenbauer-Sobolev Polynomials
    Ciaurri, Oscar
    Minguez, Judit
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2018, 14
  • [5] Laguerre-Sobolev orthogonal polynomials
    Marcellan, F
    Perez, TE
    Pinar, MA
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1996, 71 (02) : 245 - 265
  • [6] Sequentially Ordered Sobolev Inner Product and Laguerre-Sobolev Polynomials
    Diaz-Gonzalez, Abel
    Hernandez, Juan
    Pijeira-Cabrera, Hector
    MATHEMATICS, 2023, 11 (08)
  • [7] Differential Properties of Jacobi-Sobolev Polynomials and Electrostatic Interpretation
    Pijeira-Cabrera, Hector
    Quintero-Roba, Javier
    Toribio-Milane, Juan
    MATHEMATICS, 2023, 11 (15)
  • [8] On Laguerre-Sobolev matrix orthogonal polynomials
    Fuentes, Edinson
    Garza, Luis E.
    Saiz, Martha L.
    OPEN MATHEMATICS, 2024, 22 (01):
  • [9] Strong asymptotics for Gegenbauer-Sobolev orthogonal polynomials
    MartinezFinkelshtein, A
    MorenoBalcazar, JJ
    PijeiraCabrera, H
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1997, 81 (02) : 211 - 216
  • [10] A COHEN TYPE INEQUALITY FOR GEGENBAUER-SOBOLEV EXPANSIONS
    Fejzullahu, Bujar Xh.
    Marcellan, Francisco
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2013, 43 (01) : 135 - 148